-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Akhil Goel <[email protected]>
- Loading branch information
Showing
7 changed files
with
678 additions
and
602 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
# | ||
# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
import tripy as tp | ||
|
||
import tripy as tp | ||
from dataclasses import dataclass | ||
|
||
from examples.diffusion.helper import scaled_dot_product_attention | ||
|
||
@dataclass | ||
class CLIPConfig: | ||
vocab_size: int = 49408 | ||
embedding_size: int = 768 | ||
num_heads: int = 12 | ||
max_seq_len: int = 77 | ||
num_hidden_layers: int = 12 | ||
|
||
class CLIPMLP(tp.Module): | ||
def __init__(self, config: CLIPConfig): | ||
self.fc1 = tp.Linear(config.embedding_size, config.embedding_size * 4) | ||
self.fc2 = tp.Linear(config.embedding_size * 4, config.embedding_size) | ||
|
||
def __call__(self, hidden_states): | ||
hidden_states = self.fc1(hidden_states) | ||
hidden_states = tp.sigmoid(1.702 * hidden_states) * hidden_states # quick GELU | ||
hidden_states = self.fc2(hidden_states) | ||
return hidden_states | ||
|
||
|
||
class CLIPAttention(tp.Module): | ||
def __init__(self, config: CLIPConfig): | ||
self.embed_dim = config.embedding_size | ||
self.num_heads = config.num_heads | ||
self.head_dim = self.embed_dim // self.num_heads | ||
self.k_proj = tp.Linear(self.embed_dim, self.embed_dim) | ||
self.v_proj = tp.Linear(self.embed_dim, self.embed_dim) | ||
self.q_proj = tp.Linear(self.embed_dim, self.embed_dim) | ||
self.out_proj = tp.Linear(self.embed_dim, self.embed_dim) | ||
|
||
def __call__(self, hidden_states, causal_attention_mask): | ||
bsz, tgt_len, embed_dim = hidden_states.shape[0], hidden_states.shape[1], hidden_states.shape[2] | ||
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states) | ||
q, k, v = [ | ||
tp.transpose( | ||
tp.reshape(x, (bsz, tgt_len, self.num_heads, self.head_dim)), | ||
1, | ||
2, | ||
) | ||
for x in (q, k, v) | ||
] | ||
attn_output = scaled_dot_product_attention( | ||
q, k, v, embedding_dim=self.head_dim, attn_mask=causal_attention_mask | ||
) | ||
out = self.out_proj(tp.reshape(tp.transpose(attn_output, 1, 2), (bsz, tgt_len, embed_dim))) | ||
return out | ||
|
||
|
||
class CLIPEncoderLayer(tp.Module): | ||
def __init__(self, config: CLIPConfig): | ||
self.self_attn = CLIPAttention(config) | ||
self.layer_norm1 = tp.LayerNorm(config.embedding_size) | ||
self.mlp = CLIPMLP(config) | ||
self.layer_norm2 = tp.LayerNorm(config.embedding_size) | ||
|
||
def __call__(self, hidden_states, causal_attention_mask): | ||
residual = hidden_states | ||
hidden_states = self.layer_norm1(hidden_states) | ||
hidden_states = self.self_attn(hidden_states, causal_attention_mask) | ||
hidden_states = residual + hidden_states | ||
|
||
residual = hidden_states | ||
hidden_states = self.layer_norm2(hidden_states) | ||
hidden_states = self.mlp(hidden_states) | ||
hidden_states = residual + hidden_states | ||
|
||
return hidden_states | ||
|
||
|
||
class CLIPEncoder(tp.Module): | ||
def __init__(self, config: CLIPConfig): | ||
self.layers = [CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)] | ||
|
||
def __call__(self, hidden_states, causal_attention_mask): | ||
for l in self.layers: | ||
hidden_states = l(hidden_states, causal_attention_mask) | ||
return hidden_states | ||
|
||
|
||
class CLIPTextEmbeddings(tp.Module): | ||
def __init__(self, config: CLIPConfig): | ||
self.token_embedding = tp.Embedding(config.vocab_size, config.embedding_size) | ||
self.position_embedding = tp.Embedding(config.max_seq_len, config.embedding_size) | ||
|
||
def __call__(self, input_ids, position_ids): | ||
return self.token_embedding(input_ids) + self.position_embedding(position_ids) | ||
|
||
|
||
class CLIPTextTransformer(tp.Module): | ||
def __init__(self, config: CLIPConfig): | ||
self.embeddings = CLIPTextEmbeddings(config) | ||
self.encoder = CLIPEncoder(config) | ||
self.final_layer_norm = tp.LayerNorm(config.embedding_size) | ||
self.max_seq_len = config.max_seq_len | ||
|
||
def __call__(self, input_ids): | ||
x = self.embeddings(input_ids, tp.reshape(tp.iota((input_ids.shape[1],), dtype=tp.int32), (1, -1))) | ||
x = self.encoder(x, tp.triu(tp.full((1, 1, self.max_seq_len, self.max_seq_len), float("-inf")), 1)) | ||
return self.final_layer_norm(x) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
import math | ||
from functools import reduce | ||
from typing import List, Callable, Optional | ||
|
||
import tripy as tp | ||
|
||
|
||
def scaled_dot_product_attention( | ||
query: tp.Tensor, | ||
key: tp.Tensor, | ||
value: tp.Tensor, | ||
embedding_dim: Optional[int] = None, | ||
attn_mask: Optional[tp.Tensor] = None, | ||
is_causal: bool = False, | ||
) -> tp.Tensor: | ||
""" | ||
Computes scaled dot-product attention. | ||
`self` is the query tensor, `key` is the key tensor, and `value` is the value tensor. | ||
- Described: https://paperswithcode.com/method/scaled | ||
- Paper: https://arxiv.org/abs/1706.03762v7 | ||
""" | ||
|
||
if is_causal: # this path is not called in demoDiffusion | ||
target_shape = query.shape[-2:-1] + key.shape[-2:-1] | ||
# TODO: #228: WAR to prevent computing output rank in infer_rank for reshape | ||
target_shape.trace_tensor.shape = (2,) | ||
attn_mask = tp.cast(tp.tril(tp.ones(target_shape)), tp.bool) | ||
if attn_mask is not None and attn_mask.dtype == tp.bool: | ||
attn_mask = tp.where((attn_mask == 0), tp.ones_like(attn_mask) * -float("inf"), tp.zeros_like(attn_mask)) | ||
qk = query @ tp.transpose(key, -2, -1) / math.sqrt(embedding_dim) | ||
return tp.cast(tp.softmax((qk + attn_mask) if attn_mask is not None else qk, -1), query.dtype) @ value | ||
|
||
|
||
def sequential(input: tp.Tensor, ll: List[Callable[[tp.Tensor], tp.Tensor]]): | ||
""" | ||
Applies a sequence of functions to `self` chaining the output of each function to the input of the next. | ||
""" | ||
return reduce(lambda x, f: f(x), ll, input) | ||
|
||
|
||
def clamp(tensor: tp.Tensor, min: int, max: int): | ||
return tp.minimum(tp.maximum(tensor, tp.ones_like(tensor) * min), tp.ones_like(tensor) * max) |
Oops, something went wrong.