Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reimplement ATLAS WPWM 7TeV 36PB #2223

Open
wants to merge 11 commits into
base: master
Choose a base branch
from
23 changes: 23 additions & 0 deletions nnpdf_data/nnpdf_data/commondata/ATLAS_WPWM_7TEV_36PB/data.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
data_central:
- 6.13257400e+05
- 6.13939929e+05
- 6.31746805e+05
- 6.26184703e+05
- 6.52630155e+05
- 6.59312827e+05
- 6.42534838e+05
- 6.40935479e+05
- 6.60983495e+05
- 6.39876031e+05
- 5.89205893e+05
- 4.54666184e+05
- 4.48492862e+05
- 4.63569622e+05
- 4.48034447e+05
- 4.36074909e+05
- 4.26723243e+05
- 3.94511949e+05
- 3.91211361e+05
- 3.82307923e+05
- 3.64073193e+05
- 3.37179513e+05
100 changes: 100 additions & 0 deletions nnpdf_data/nnpdf_data/commondata/ATLAS_WPWM_7TEV_36PB/filter.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
"""
When running `python filter.py` the relevant data yaml
file will be created in the `nnpdf_data/commondata/ATLAS_WPWM_7TEV_46FB` directory.
"""

import yaml
from filter_utils import get_data_values, get_kinematics, get_systematics

from nnpdf_data.filter_utils.utils import prettify_float

yaml.add_representer(float, prettify_float)


def filter_ATLAS_WPWM_7TEV_36FB_data_kinematic():
"""
This function writes the systematics to yaml files.
"""

central_values = get_data_values()

kin = get_kinematics()

data_central_yaml = {"data_central": central_values}

kinematics_yaml = {"bins": kin}

# write central values and kinematics to yaml file
with open("data.yaml", "w") as file:
yaml.dump(data_central_yaml, file, sort_keys=False)

with open("kinematics.yaml", "w") as file:
yaml.dump(kinematics_yaml, file, sort_keys=False)


def filter_ATLAS_WPWM_7TEV_36FB_systematics():
"""
This function writes the systematics to a yaml file.
"""

with open("metadata.yaml", "r") as file:
metadata = yaml.safe_load(file)

systematics = get_systematics()

# error definition
error_definitions = {}
errors = []
counter_1 = 1
counter_2 = 0
for sys in systematics:
if sys[0]['name'] == 'stat':
error_definitions[sys[0]['name']] = {
"description": "Uncorrelated statistical uncertainties",
"treatment": "ADD",
"type": "UNCORR",
}

elif sys[0]['name'] == 'uncor':
error_definitions[sys[0]['name']] = {
"description": f"Sys uncertainty idx: {counter_1}",
"treatment": "MULT",
"type": "UNCORR",
}
counter_1 += 1

elif sys[0]['name'] == 'atlaslumi10':
error_definitions[sys[0]['name']] = {
"description": f"Sys uncertainty idx: {counter_1}",
"treatment": "MULT",
"type": "ATLASLUMI10",
}
counter_1 += 1

else:
error_definitions[sys[0]['name']] = {
"description": f"Sys uncertainty idx: {counter_1}",
"treatment": "MULT",
"type": f"ATLASWZRAP36PB_{counter_2}",
}
counter_1 += 1
counter_2 += 1

for i in range(metadata['implemented_observables'][0]['ndata']):
error_value = {}

for sys in systematics:
error_value[sys[0]['name']] = float(sys[0]['values'][i])

errors.append(error_value)

uncertainties_yaml = {"definitions": error_definitions, "bins": errors}

# write uncertainties
with open(f"uncertainties.yaml", 'w') as file:
yaml.dump(uncertainties_yaml, file, sort_keys=False)


if __name__ == "__main__":
filter_ATLAS_WPWM_7TEV_36FB_data_kinematic()
filter_ATLAS_WPWM_7TEV_36FB_systematics()
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
"""
This module contains helper functions that are used to extract the data values
from the rawdata files.
"""

import yaml
import pandas as pd
import numpy as np


def get_data_values():
"""
returns the central data values in the form of a list.
"""

data_central = []

tables = [5, 3]

for table in tables:
hepdata_table = f"rawdata/HEPData-ins928289-v1-Table_{table}.yaml"

with open(hepdata_table, 'r') as file:
input = yaml.safe_load(file)

values = input['dependent_variables'][0]['values']

for value in values:
# store data central and convert the units and apply the correction factor
data_central.append(value['value'] * 1000 * 1.0187)

return data_central


def get_kinematics():
"""
returns the kinematics in the form of a list of dictionaries.
"""
kin = []

tables = [5, 3]

for table in tables:
hepdata_table = f"rawdata/HEPData-ins928289-v1-Table_{table}.yaml"

with open(hepdata_table, 'r') as file:
input = yaml.safe_load(file)

for i, M in enumerate(input["independent_variables"][0]['values']):
kin_value = {
'abs_eta': {'min': None, 'mid': (0.5 * (M['low'] + M['high'])), 'max': None},
'm_W2': {'min': None, 'mid': 6463.838404, 'max': None},
'sqrts': {'min': None, 'mid': 7000.0, 'max': None},
}
kin.append(kin_value)

return kin


def get_systematics_dataframe():
"""
returns the absolute systematic uncertainties in the form of a pandas dataframe.
"""
sys_rawdata_path = "rawdata/ATLAS-36PB_WPWM.csv"

abs_unc_df_arr = []

data_central = get_data_values()

df = pd.read_csv(sys_rawdata_path)

# convert (MULT) percentage unc to absolute unc
abs_unc_df = (df.T[2:] * data_central).T / 100
abs_unc_df_arr.append(abs_unc_df)

return abs_unc_df


def get_systematics():
""" """
abs_unc_df = get_systematics_dataframe()

uncertainties = []

for i, unc_dp in enumerate(abs_unc_df.values.T):
name = f"{abs_unc_df.columns[i]}"
values = [unc_dp[j] for j in range(len(unc_dp))]
uncertainties.append([{"name": name, "values": values}])

return uncertainties


if __name__ == "__main__":
get_data_values()
get_kinematics()
get_systematics()
Loading
Loading