Skip to content

27th in 2019 Lyft 3D Object Detection Kaggle Competition

License

Notifications You must be signed in to change notification settings

Michalos88/second-improved

Repository files navigation

Second-Improved

Implementation of SECOND paper for 3D Object Detection with following performance improvements:

  1. Full Lyft Dataset Integration
  2. Parallel Data Preperation with Ray
  3. Checkpoints during training
  4. Class upsampling, as in CBGS paper
  5. Mean IOU Computation, just like in Lyft Kaggle Competition
  6. Parallel Score Computation
  7. Debugged config usage (some configs were not trully connected to anything)
  8. Added PathLib Support
  9. Added Scripts for Evaluation, Training and Data Prep
  10. Handling of corrupted scenes in Lyft DataSet

This repo is based on @traveller59's second.pytorch.

Using this code and configuration, I won 27th place in 2019 Lyft 3D Object Dectection Kaggle Competition.

Instalation

Clone code

git clone https://github.com/traveller59/second.pytorch.git
cd ./second.pytorch/second

CMake

wget "https://github.com/Kitware/CMake/releases/download/v3.15.4/cmake-3.15.4.tar.gz"
tar xf cmake-3.15.4.tar.gz
cd ./cmake-3.15.4/
./configure
make
make install
export PATH=/usr/local/bin:$PATH
cmake --version

Pytorch

conda create -n env_stereo python=3.6
conda activate env_stereo
conda install pytorch==1.0.0 torchvision==0.2.1 cuda100 -c pytorch

spconv

git clone https://github.com/Michalos88/spconv --recursive
sudo apt-get install libboost-all-dev
cd spconv/
python setup.py bdist_wheel
cd ./dist/
pip install spconv-1.1-cp36-cp36m-linux_x86_64.whl

Python Dependencies

conda install scikit-image scipy numba pillow matplotlib
pip install fire tensorboardX protobuf opencv-python ray 

If you want to use NuScenes dataset, you need to install nuscenes-devkit. If you want to use Lyft dataset, you need to install lyft-devkit.

Setup cuda for numba

you need to add following environment variable for numba.cuda, you can add them to ~/.bashrc:

export NUMBAPRO_CUDA_DRIVER=/usr/lib/x86_64-linux-gnu/libcuda.so
export NUMBAPRO_NVVM=/usr/local/cuda/nvvm/lib64/libnvvm.so
export NUMBAPRO_LIBDEVICE=/usr/local/cuda/nvvm/libdevice

add second.pytorch/ to PYTHONPATH

export PATHONPATH=.

Prepare dataset

  • KITTI Dataset preparation

Download KITTI dataset and create some directories first:

└── KITTI_DATASET_ROOT
       ├── training    <-- 7481 train data
       |   ├── image_2 <-- for visualization
       |   ├── calib
       |   ├── label_2
       |   ├── velodyne
       |   └── velodyne_reduced <-- empty directory
       └── testing     <-- 7580 test data
           ├── image_2 <-- for visualization
           ├── calib
           ├── velodyne
           └── velodyne_reduced <-- empty directory

Then run

python create_data.py kitti_data_prep --data_path=KITTI_DATASET_ROOT

Download NuScenes dataset:

└── NUSCENES_TRAINVAL_DATASET_ROOT
       ├── samples       <-- key frames
       ├── sweeps        <-- frames without annotation
       ├── maps          <-- unused
       └── v1.0-trainval <-- metadata and annotations
└── NUSCENES_TEST_DATASET_ROOT
       ├── samples       <-- key frames
       ├── sweeps        <-- frames without annotation
       ├── maps          <-- unused
       └── v1.0-test     <-- metadata

Then run

python create_data.py nuscenes_data_prep --data_path=NUSCENES_TRAINVAL_DATASET_ROOT --version="v1.0-trainval" --max_sweeps=10
python create_data.py nuscenes_data_prep --data_path=NUSCENES_TEST_DATASET_ROOT --version="v1.0-test" --max_sweeps=10
--dataset_name="NuscenesDataset"
  • Lyft Dataset preparation

Download NuScenes dataset:

└── ../lyft_data/train
       ├── samples       <-- key frames
       ├── sweeps        <-- frames without annotation
       ├── maps          <-- unused
       └── v1.0-trainval <-- metadata and annotations
└── ../lyft_data/test
       ├── samples       <-- key frames
       ├── sweeps        <-- frames without annotation
       ├── maps          <-- unused
       └── v1.0-test     <-- metadata

Then run

python create_data.py lyft_data_prep --data_path=../lyft_data/train --version="v1.0-trainval" 
python create_data.py nuscenes_data_prep --data_path=../lyft_data/testT --version="v1.0-test" 
--dataset_name="LyftDataset"

Usage

train

I recommend to use script.py to train and eval. see script.py for more details.

train with single GPU

python ./pytorch/train.py train --config_path=./configs/car.fhd.config --model_dir=/path/to/model_dir

train with multiple GPU (need test, I only have one GPU)

Assume you have 4 GPUs and want to train with 3 GPUs:

CUDA_VISIBLE_DEVICES=0,1,3 python ./pytorch/train.py train --config_path=./configs/car.fhd.config --model_dir=/path/to/model_dir --multi_gpu=True

Note: The batch_size and num_workers in config file is per-GPU, if you use multi-gpu, they will be multiplied by number of GPUs. Don't modify them manually.

You need to modify total step in config file. For example, 50 epochs = 15500 steps for car.lite.config and single GPU, if you use 4 GPUs, you need to divide steps and steps_per_eval by 4.

train with fp16 (mixed precision)

Modify config file, set enable_mixed_precision to true.

  • Make sure "/path/to/model_dir" doesn't exist if you want to train new model. A new directory will be created if the model_dir doesn't exist, otherwise will read checkpoints in it.

  • training process use batchsize=6 as default for 1080Ti, you need to reduce batchsize if your GPU has less memory.

  • Currently only support single GPU training, but train a model only needs 20 hours (165 epoch) in a single 1080Ti and only needs 50 epoch to reach 78.3 AP with super converge in car moderate 3D in Kitti validation dateset.

evaluate

python ./pytorch/train.py evaluate --config_path=./configs/car.fhd.config --model_dir=/path/to/model_dir --measure_time=True --batch_size=1
  • detection result will saved as a result.pkl file in model_dir/eval_results/step_xxx or save as official KITTI label format if you use --pickle_result=False.

pretrained model

You can download pretrained models in google drive. The car_fhd model is corresponding to car.fhd.config.

Note that this pretrained model is trained before a bug of sparse convolution fixed, so the eval result may slightly worse.

Docker (Deprecated. I can't push docker due to network problem.)

You can use a prebuilt docker for testing:

docker pull scrin/second-pytorch

Then run:

nvidia-docker run -it --rm -v /media/yy/960evo/datasets/:/root/data -v $HOME/pretrained_models:/root/model --ipc=host second-pytorch:latest
python ./pytorch/train.py evaluate --config_path=./configs/car.config --model_dir=/root/model/car

About

27th in 2019 Lyft 3D Object Detection Kaggle Competition

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published