polars-bloomberg is a Python library that extracts Bloomberg’s financial data directly into Polars DataFrames.
If you’re a quant financial analyst, data scientist, or quant developer working in capital markets, this library makes it easy to fetch, transform, and analyze Bloomberg data right in Polars—offering speed, efficient memory usage, and a lot of fun to use!
Why use polars-bloomberg?
- User-Friendly Functions: Shortcuts like
bdp()
,bdh()
, andbql()
(inspired by Excel-like Bloomberg calls) let you pull data with minimal boilerplate. - High-Performance Analytics: Polars is a lightning-fast DataFrame library. Combined with Bloomberg’s rich dataset, you get efficient data retrieval and minimal memory footprint
- No Pandas Dependency: Enjoy a clean integration that relies solely on Polars for speed and simplicity.
- Introduction
- Prerequisites
- Installation
- Quick Start
- Core Methods
- Additional Documentation and Resources
Working with Bloomberg data in Python often feels more complicated than using their well-known Excel interface. Great projects like blp, xbbg, and pdblp have made this easier by pulling data directly into pandas.
With polars-bloomberg, you can enjoy the speed and simplicity of Polars DataFrames—accessing both familiar Excel-style calls (bdp
, bdh
) and advanced bql
queries—without extra pandas conversions.
For detailed documentation and function references, visit the documentation site https://marekozana.github.io/polars-bloomberg.
I hope you enjoy using it as much as I had fun building it!
- Bloomberg Access: A valid Bloomberg terminal license.
- Bloomberg Python API: The
blpapi
library must be installed. See the Bloomberg API Library for guidance. - Python Version: Python 3.12+ recommended.
pip install polars-bloomberg
"Hello World" Example (under 1 minute):
from polars_bloomberg import BQuery
# Fetch the latest price for Apple (AAPL US Equity)
with BQuery() as bq:
df = bq.bdp(["AAPL US Equity"], ["PX_LAST"])
print(df)
┌────────────────┬─────────┐
│ security ┆ PX_LAST │
│ --- ┆ --- │
│ str ┆ f64 │
╞════════════════╪═════════╡
│ AAPL US Equity ┆ 248.13 │
└────────────────┴─────────┘
What this does:
- Establishes a Bloomberg connection using the context manager.
- Retrieves the last price of Apple shares.
- Returns the result as a Polars DataFrame.
If you see a price in df
, your setup is working 🤩!!!
BQuery
is your main interface. Using a context manager ensures the connection opens and closes cleanly. Within this session, you can use:
bq.bdp()
for Bloomberg Data Points (single-value fields).bq.bdh()
for Historical Data (time series).bq.bql()
for complex Bloomberg Query Language requests.
Use Case: Fetch the latest single-value data points (like last price, currency, or descriptive fields).
with BQuery() as bq:
df = bq.bdp(["AAPL US Equity", "SEBA SS Equity"], ["PX_LAST", "CRNCY"])
print(df)
┌────────────────┬─────────┬───────┐
│ security ┆ PX_LAST ┆ CRNCY │
│ --- ┆ --- ┆ --- │
│ str ┆ f64 ┆ str │
╞════════════════╪═════════╪═══════╡
│ AAPL US Equity ┆ 248.13 ┆ USD │
│ SEBA SS Equity ┆ 155.2 ┆ SEK │
└────────────────┴─────────┴───────┘
Expand for more BDP Examples
polars-bloomberg
correctly infers column type as shown in this example:
with BQuery() as bq:
df = bq.bdp(["XS2930103580 Corp", "USX60003AC87 Corp"],
["SECURITY_DES", "YAS_ZSPREAD", "CRNCY", "NXT_CALL_DT"])
┌───────────────────┬────────────────┬─────────────┬───────┬─────────────┐
│ security ┆ SECURITY_DES ┆ YAS_ZSPREAD ┆ CRNCY ┆ NXT_CALL_DT │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ f64 ┆ str ┆ date │
╞═══════════════════╪════════════════╪═════════════╪═══════╪═════════════╡
│ XS2930103580 Corp ┆ SEB 6 3/4 PERP ┆ 304.676112 ┆ USD ┆ 2031-11-04 │
│ USX60003AC87 Corp ┆ NDAFH 6.3 PERP ┆ 292.477506 ┆ USD ┆ 2031-09-25 │
└───────────────────┴────────────────┴─────────────┴───────┴─────────────┘
User can submit list of tuples with overrides
with BQuery() as bq:
df = bq.bdp(
["IBM US Equity"],
["PX_LAST", "CRNCY_ADJ_PX_LAST"],
overrides=[("EQY_FUND_CRNCY", "SEK")],
)
┌───────────────┬─────────┬───────────────────┐
│ security ┆ PX_LAST ┆ CRNCY_ADJ_PX_LAST │
│ --- ┆ --- ┆ --- │
│ str ┆ f64 ┆ f64 │
╞═══════════════╪═════════╪═══════════════════╡
│ IBM US Equity ┆ 230.82 ┆ 2535.174 │
└───────────────┴─────────┴───────────────────┘
Overrides for dates has to be in format YYYYMMDD
with BQuery() as bq:
df = bq.bdp(["USX60003AC87 Corp"], ["SETTLE_DT"],
overrides=[("USER_LOCAL_TRADE_DATE", "20241014")])
┌───────────────────┬────────────┐
│ security ┆ SETTLE_DT │
│ --- ┆ --- │
│ str ┆ date │
╞═══════════════════╪════════════╡
│ USX60003AC87 Corp ┆ 2024-10-15 │
└───────────────────┴────────────┘
with BQuery() as bq:
df = bq.bdp(['USDSEK Curncy', 'SEKCZK Curncy'],
['SETTLE_DT', 'PX_LAST'],
overrides=[('REFERENCE_DATE', '20200715')]
)
┌───────────────┬────────────┬─────────┐
│ security ┆ SETTLE_DT ┆ PX_LAST │
│ --- ┆ --- ┆ --- │
│ str ┆ date ┆ f64 │
╞═══════════════╪════════════╪═════════╡
│ USDSEK Curncy ┆ 2020-07-17 ┆ 10.9778 │
│ SEKCZK Curncy ┆ 2020-07-17 ┆ 2.1698 │
└───────────────┴────────────┴─────────┘
Use Case: Retrieve historical data over a date range, such as daily closing prices or volumes.
with BQuery() as bq:
df = bq.bdh(
["TLT US Equity"],
["PX_LAST"],
start_date=date(2019, 1, 1),
end_date=date(2019, 1, 7),
)
print(df)
┌───────────────┬────────────┬─────────┐
│ security ┆ date ┆ PX_LAST │
│ --- ┆ --- ┆ --- │
│ str ┆ date ┆ f64 │
╞═══════════════╪════════════╪═════════╡
│ TLT US Equity ┆ 2019-01-02 ┆ 122.15 │
│ TLT US Equity ┆ 2019-01-03 ┆ 123.54 │
│ TLT US Equity ┆ 2019-01-04 ┆ 122.11 │
│ TLT US Equity ┆ 2019-01-07 ┆ 121.75 │
└───────────────┴────────────┴─────────┘
Expand for more BDH examples
with BQuery() as bq:
df = bq.bdh(
securities=["SPY US Equity", "TLT US Equity"],
fields=["PX_LAST", "VOLUME"],
start_date=date(2019, 1, 1),
end_date=date(2019, 1, 10),
options={"adjustmentSplit": True},
)
print(df)
shape: (14, 4)
┌───────────────┬────────────┬─────────┬──────────────┐
│ security ┆ date ┆ PX_LAST ┆ VOLUME │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ date ┆ f64 ┆ f64 │
╞═══════════════╪════════════╪═════════╪══════════════╡
│ SPY US Equity ┆ 2019-01-02 ┆ 250.18 ┆ 1.26925199e8 │
│ SPY US Equity ┆ 2019-01-03 ┆ 244.21 ┆ 1.44140692e8 │
│ SPY US Equity ┆ 2019-01-04 ┆ 252.39 ┆ 1.42628834e8 │
│ SPY US Equity ┆ 2019-01-07 ┆ 254.38 ┆ 1.031391e8 │
│ SPY US Equity ┆ 2019-01-08 ┆ 256.77 ┆ 1.02512587e8 │
│ … ┆ … ┆ … ┆ … │
│ TLT US Equity ┆ 2019-01-04 ┆ 122.11 ┆ 1.2970226e7 │
│ TLT US Equity ┆ 2019-01-07 ┆ 121.75 ┆ 8.498104e6 │
│ TLT US Equity ┆ 2019-01-08 ┆ 121.43 ┆ 7.737103e6 │
│ TLT US Equity ┆ 2019-01-09 ┆ 121.24 ┆ 9.349245e6 │
│ TLT US Equity ┆ 2019-01-10 ┆ 120.46 ┆ 8.22286e6 │
└───────────────┴────────────┴─────────┴──────────────┘
with BQuery() as bq:
df = bq.bdh(['AAPL US Equity'],
['PX_LAST'],
start_date=date(2019, 1, 1),
end_date=date(2019, 3, 29),
options={"periodicitySelection": "MONTHLY"})
┌────────────────┬────────────┬─────────┐
│ security ┆ date ┆ PX_LAST │
│ --- ┆ --- ┆ --- │
│ str ┆ date ┆ f64 │
╞════════════════╪════════════╪═════════╡
│ AAPL US Equity ┆ 2019-01-31 ┆ 41.61 │
│ AAPL US Equity ┆ 2019-02-28 ┆ 43.288 │
│ AAPL US Equity ┆ 2019-03-29 ┆ 47.488 │
└────────────────┴────────────┴─────────┘
Use Case: Run more advanced queries to screen securities, calculate analytics (like moving averages), or pull fundamental data with complex conditions.
Returns: The bql()
method returns a BqlResult
object, which:
- Acts like a list of Polars DataFrames (one for each item in BQL
get
statement). - Provides a
.combine()
method to merge DataFrames on common columns.
# Fetch the last price of IBM stock
with BQuery() as bq:
results = bq.bql("get(px_last) for(['IBM US Equity'])")
print(results[0]) # Access the first DataFrame
Output:
┌───────────────┬─────────┬────────────┬──────────┐
│ ID ┆ px_last ┆ DATE ┆ CURRENCY │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ f64 ┆ date ┆ str │
╞═══════════════╪═════════╪════════════╪══════════╡
│ IBM US Equity ┆ 230.82 ┆ 2024-12-14 ┆ USD │
└───────────────┴─────────┴────────────┴──────────┘
# Fetch the last price for IBM and SEB
with BQuery() as bq:
results = bq.bql("get(px_last) for(['IBM US Equity', 'SEBA SS Equity'])")
print(results[0])
Output:
┌────────────────┬─────────┬────────────┬──────────┐
│ ID ┆ px_last ┆ DATE ┆ CURRENCY │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ f64 ┆ date ┆ str │
╞════════════════╪═════════╪════════════╪══════════╡
│ IBM US Equity ┆ 230.82 ┆ 2024-12-14 ┆ USD │
│ SEBA SS Equity ┆ 155.2 ┆ 2024-12-14 ┆ SEK │
└────────────────┴─────────┴────────────┴──────────┘
When querying for multiple items, bql()
returns a list of DataFrames
# Fetch name and last price of IBM (two items)
with BQuery() as bq:
results = bq.bql("get(name, px_last) for(['IBM US Equity'])")
Output:
>>> print(len(results)) # 2 DataFrames
n=2
>>> print(results[0]) # First DataFrame: 'name'
┌───────────────┬────────────────────────────────┐
│ ID ┆ name │
│ --- ┆ --- │
│ str ┆ str │
╞═══════════════╪════════════════════════════════╡
│ IBM US Equity ┆ International Business Machine │
└───────────────┴────────────────────────────────┘
>>> print(results[1]) # Second DataFrame: 'px_last'
┌───────────────┬─────────┬────────────┬──────────┐
│ ID ┆ px_last ┆ DATE ┆ CURRENCY │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ f64 ┆ date ┆ str │
╞═══════════════╪═════════╪════════════╪══════════╡
│ IBM US Equity ┆ 230.82 ┆ 2024-12-14 ┆ USD │
└───────────────┴─────────┴────────────┴──────────┘
>>> combined_df = results.combine()
>>> print(combined_df)
Output:
┌───────────────┬────────────────────────────────┬─────────┬────────────┬──────────┐
│ ID ┆ name ┆ px_last ┆ DATE ┆ CURRENCY │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ f64 ┆ date ┆ str │
╞═══════════════╪════════════════════════════════╪═════════╪════════════╪══════════╡
│ IBM US Equity ┆ International Business Machine ┆ 230.82 ┆ 2024-12-14 ┆ USD │
└───────────────┴────────────────────────────────┴─────────┴────────────┴──────────┘
Find list of SEB and Handelsbanken's AT1 bonds and print their names, duration and Z-Spread.
query="""
let(#dur=duration(duration_type=MODIFIED);
#zsprd=spread(spread_type=Z);)
get(name(), #dur, #zsprd)
for(filter(screenresults(type=SRCH, screen_name='@COCO'),
ticker in ['SEB', 'SHBASS']))
"""
with BQuery() as bq:
results = bq.bql(query)
combined_df = results.combine()
print(combined_df)
Output:
┌───────────────┬─────────────────┬──────┬────────────┬────────┐
│ ID ┆ name() ┆ #dur ┆ DATE ┆ #zsprd │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ f64 ┆ date ┆ f64 │
╞═══════════════╪═════════════════╪══════╪════════════╪════════╡
│ BW924993 Corp ┆ SEB 6 ⅞ PERP ┆ 2.23 ┆ 2024-12-16 ┆ 212.0 │
│ YV402592 Corp ┆ SEB Float PERP ┆ 0.21 ┆ 2024-12-16 ┆ 233.0 │
│ ZQ349286 Corp ┆ SEB 5 ⅛ PERP ┆ 0.39 ┆ 2024-12-16 ┆ 186.0 │
│ ZO703315 Corp ┆ SHBASS 4 ⅜ PERP ┆ 1.95 ┆ 2024-12-16 ┆ 213.0 │
│ ZO703956 Corp ┆ SHBASS 4 ¾ PERP ┆ 4.94 ┆ 2024-12-16 ┆ 256.0 │
│ YU819930 Corp ┆ SEB 6 ¾ PERP ┆ 5.37 ┆ 2024-12-16 ┆ 309.0 │
└───────────────┴─────────────────┴──────┴────────────┴────────┘
This example shows aggregation (average) per group (sector) for members of an index.
The resulting list has only one element since there is only one data-item in get
query = """
let(#avg_pe=avg(group(pe_ratio(), gics_sector_name()));)
get(#avg_pe)
for(members('OMX Index'))
"""
with BQuery() as bq:
results = bq.bql(query)
print(results[0].head(5))
Output:
┌──────────────┬───────────┬──────────────┬────────────┬──────────────┬──────────────┬─────────────┐
│ ID ┆ #avg_pe ┆ REVISION_DAT ┆ AS_OF_DATE ┆ PERIOD_END_D ┆ ORIG_IDS ┆ GICS_SECTOR │
│ --- ┆ --- ┆ E ┆ --- ┆ ATE ┆ --- ┆ _NAME() │
│ str ┆ f64 ┆ --- ┆ date ┆ --- ┆ str ┆ --- │
│ ┆ ┆ date ┆ ┆ date ┆ ┆ str │
╞══════════════╪═══════════╪══════════════╪════════════╪══════════════╪══════════════╪═════════════╡
│ Communicatio ┆ 19.561754 ┆ 2024-10-24 ┆ 2024-12-14 ┆ 2024-09-30 ┆ null ┆ Communicati │
│ n Services ┆ ┆ ┆ ┆ ┆ ┆ on Services │
│ Consumer Dis ┆ 19.117295 ┆ 2024-10-24 ┆ 2024-12-14 ┆ 2024-09-30 ┆ null ┆ Consumer │
│ cretionary ┆ ┆ ┆ ┆ ┆ ┆ Discretiona │
│ ┆ ┆ ┆ ┆ ┆ ┆ ry │
│ Consumer ┆ 15.984743 ┆ 2024-10-24 ┆ 2024-12-14 ┆ 2024-09-30 ┆ ESSITYB SS ┆ Consumer │
│ Staples ┆ ┆ ┆ ┆ ┆ Equity ┆ Staples │
│ Financials ┆ 6.815895 ┆ 2024-10-24 ┆ 2024-12-14 ┆ 2024-09-30 ┆ null ┆ Financials │
│ Health Care ┆ 22.00628 ┆ 2024-11-12 ┆ 2024-12-14 ┆ 2024-09-30 ┆ null ┆ Health Care │
└──────────────┴───────────┴──────────────┴────────────┴──────────────┴──────────────┴─────────────┘
Get current axes of all Swedish USD AT1 bonds
# Get current axes for Swedish AT1 bonds in USD
query="""
let(#ax=axes();)
get(security_des, #ax)
for(filter(bondsuniv(ACTIVE),
crncy()=='USD' and
basel_iii_designation() == 'Additional Tier 1' and
country_iso() == 'SE'))
"""
with BQuery() as bq:
results = bq.bql(query)
print(results.combine())
┌───────────────┬─────────────────┬─────┬───────────┬───────────┬────────────────┬────────────────┐
│ ID ┆ security_des ┆ #ax ┆ ASK_DEPTH ┆ BID_DEPTH ┆ ASK_TOTAL_SIZE ┆ BID_TOTAL_SIZE │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ i64 ┆ i64 ┆ f64 ┆ f64 │
╞═══════════════╪═════════════════╪═════╪═══════════╪═══════════╪════════════════╪════════════════╡
│ YU819930 Corp ┆ SEB 6 ¾ PERP ┆ Y ┆ 2 ┆ null ┆ 5.6e6 ┆ null │
│ ZO703315 Corp ┆ SHBASS 4 ⅜ PERP ┆ Y ┆ 1 ┆ 2 ┆ 5e6 ┆ 6e6 │
│ BR069680 Corp ┆ SWEDA 4 PERP ┆ Y ┆ null ┆ 1 ┆ null ┆ 3e6 │
│ ZL122341 Corp ┆ SWEDA 7 ⅝ PERP ┆ Y ┆ null ┆ 6 ┆ null ┆ 2.04e7 │
│ ZQ349286 Corp ┆ SEB 5 ⅛ PERP ┆ Y ┆ 2 ┆ 4 ┆ 5.5e6 ┆ 3e7 │
│ ZF859199 Corp ┆ SWEDA 7 ¾ PERP ┆ Y ┆ 1 ┆ 1 ┆ 2e6 ┆ 2e6 │
│ ZO703956 Corp ┆ SHBASS 4 ¾ PERP ┆ Y ┆ 1 ┆ 3 ┆ 1.2e6 ┆ 1.1e7 │
│ BW924993 Corp ┆ SEB 6 ⅞ PERP ┆ Y ┆ 1 ┆ 3 ┆ 5e6 ┆ 1.1e7 │
└───────────────┴─────────────────┴─────┴───────────┴───────────┴────────────────┴────────────────┘
# RT1 Axes with all columns
query = """
let(#ax=axes();)
get(name, #ax, amt_outstanding)
for(filter(bondsuniv(ACTIVE),
crncy() in ['USD', 'EUR'] and
solvency_ii_designation() == 'Restricted Tier 1' and
amt_outstanding() > 7.5e8 and
is_axed('Bid') == True))
preferences(addcols=all)
"""
with BQuery() as bq:
results = bq.bql(query)
print(results.combine())
Output:
ID | name | #ax | ASK_PRICE | BID_PRICE | ASK_DEPTH | BID_DEPTH | ASK_DEALER | BID_DEALER | ASK_SIZE | BID_SIZE | ASK_TOTAL_SIZE | BID_TOTAL_SIZE | ASK_PRICE_IS_DERIVED | BID_PRICE_IS_DERIVED | ASK_SPREAD | BID_SPREAD | ASK_SPREAD_IS_DERIVED | BID_SPREAD_IS_DERIVED | ASK_YIELD | BID_YIELD | ASK_YIELD_IS_DERIVED | BID_YIELD_IS_DERIVED | ASK_AXE_SOURCE | BID_AXE_SOURCE | ASK_BROKER | BID_BROKER | ASK_HIST_AGG_SIZE | BID_HIST_AGG_SIZE | amt_outstanding | CURRENCY_OF_ISSUE | MULTIPLIER | CURRENCY |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
str | str | str | f64 | f64 | i64 | i64 | str | str | f64 | f64 | f64 | f64 | bool | bool | f64 | f64 | bool | bool | f64 | f64 | bool | bool | str | str | str | str | f64 | f64 | f64 | str | f64 | str |
"BM368057 Corp" | "ALVGR 2 ⅝ PERP" | "Y" | 88.034 | 87.427 | 5 | 1 | "BARC" | "IMI" | 1.2e6 | 1e6 | 7.2e6 | 1e6 | null | null | 287.031 | 300.046 | true | true | 4.854 | 4.976 | true | true | "ERUN" | "ERUN" | "BXOL" | "IMIC" | 6.68e6 | 8.92e6 | 1.2500e9 | "EUR" | 1.0 | "EUR" |
"EK588238 Corp" | "ASSGEN 4.596 PERP" | "Y" | 101.0 | 100.13 | 4 | 6 | "MSAX" | "A2A" | 500000.0 | 100000.0 | 1.556e7 | 3.83e7 | null | null | 108.9 | 207.889 | true | true | 3.466 | 4.434 | null | true | "ERUN" | "BBX" | "MSAX" | "A2A" | 1.70424e7 | 3.17e7 | 1.0004e9 | "EUR" | 1.0 | "EUR" |
"BR244025 Corp" | "ALVGR 3.2 PERP" | "Y" | 88.0 | 86.875 | 3 | 4 | "UBS" | "DB" | 5e6 | 1e6 | 1.1e7 | 1.4e7 | null | null | 49.33 | 414.602 | true | true | 7.34258 | 8.553 | null | true | "ERUN" | "ERUN" | "UBSW" | "DABC" | 1.6876e6 | 3.6e7 | 1.2500e9 | "USD" | 1.0 | "USD" |
The following example shows handling of two data-items with different length. The first dataframe describes the segments (and has length 5 in this case), while the second dataframe contains time series. One can join the dataframes on common columns and pivot the segments into columns as shown below:
# revenue per segment
query = """
let(#segment=segment_name();
#revenue=sales_Rev_turn(fpt=q, fpr=range(2023Q3, 2024Q3));
)
get(#segment, #revenue)
for(segments('GTN US Equity',type=reported,hierarchy=PRODUCT, level=1))
"""
with BQuery() as bq:
results = bq.bql(query)
df = results.combine().pivot(
index="PERIOD_END_DATE", on="#segment", values="#revenue"
)
print(df)
Output:
┌─────────────────┬──────────────┬──────────────────────┬────────┬────────────┐
│ PERIOD_END_DATE ┆ Broadcasting ┆ Production Companies ┆ Other ┆ Adjustment │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ date ┆ f64 ┆ f64 ┆ f64 ┆ f64 │
╞═════════════════╪══════════════╪══════════════════════╪════════╪════════════╡
│ 2023-09-30 ┆ 7.83e8 ┆ 2e7 ┆ 1.6e7 ┆ null │
│ 2023-12-31 ┆ 8.13e8 ┆ 3.2e7 ┆ 1.9e7 ┆ null │
│ 2024-03-31 ┆ 7.8e8 ┆ 2.4e7 ┆ 1.9e7 ┆ null │
│ 2024-06-30 ┆ 8.08e8 ┆ 1.8e7 ┆ 0.0 ┆ null │
│ 2024-09-30 ┆ 9.24e8 ┆ 2.6e7 ┆ 1.7e7 ┆ null │
└─────────────────┴──────────────┴──────────────────────┴────────┴────────────┘
with BQuery() as bq:
results = bq.bql("""
let(#eps=is_eps(fa_period_type='A',
fa_period_offset=range(-4,2));)
get(#eps)
for(['IBM US Equity'])
""")
print(results[0])
┌───────────────┬───────┬───────────────┬────────────┬─────────────────┬──────────┐
│ ID ┆ #eps ┆ REVISION_DATE ┆ AS_OF_DATE ┆ PERIOD_END_DATE ┆ CURRENCY │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ f64 ┆ date ┆ date ┆ date ┆ str │
╞═══════════════╪═══════╪═══════════════╪════════════╪═════════════════╪══════════╡
│ IBM US Equity ┆ 10.63 ┆ 2022-02-22 ┆ 2024-12-14 ┆ 2019-12-31 ┆ USD │
│ IBM US Equity ┆ 6.28 ┆ 2023-02-28 ┆ 2024-12-14 ┆ 2020-12-31 ┆ USD │
│ IBM US Equity ┆ 6.41 ┆ 2023-02-28 ┆ 2024-12-14 ┆ 2021-12-31 ┆ USD │
│ IBM US Equity ┆ 1.82 ┆ 2024-03-18 ┆ 2024-12-14 ┆ 2022-12-31 ┆ USD │
│ IBM US Equity ┆ 8.23 ┆ 2024-03-18 ┆ 2024-12-14 ┆ 2023-12-31 ┆ USD │
│ IBM US Equity ┆ 7.891 ┆ 2024-12-13 ┆ 2024-12-14 ┆ 2024-12-31 ┆ USD │
│ IBM US Equity ┆ 9.236 ┆ 2024-12-13 ┆ 2024-12-14 ┆ 2025-12-31 ┆ USD │
└───────────────┴───────┴───────────────┴────────────┴─────────────────┴──────────┘
# Example: Average OAS-spread per maturity bucket
query = """
let(
#bins = bins(maturity_years,
[3,9,18,30],
['(1) 0-3','(2) 3-9','(3) 9-18','(4) 18-30','(5) 30+']);
#average_spread = avg(group(spread(st=oas),#bins));
)
get(#average_spread)
for(filter(bonds('NVDA US Equity', issuedby = 'ENTITY'),
maturity_years != NA))
"""
with BQuery() as bq:
results = bq.bql(query)
print(results[0])
Output:
┌───────────┬─────────────────┬────────────┬───────────────┬───────────┐
│ ID ┆ #average_spread ┆ DATE ┆ ORIG_IDS ┆ #BINS │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ f64 ┆ date ┆ str ┆ str │
╞═══════════╪═════════════════╪════════════╪═══════════════╪═══════════╡
│ (1) 0-3 ┆ 31.195689 ┆ 2024-12-14 ┆ QZ552396 Corp ┆ (1) 0-3 │
│ (2) 3-9 ┆ 59.580383 ┆ 2024-12-14 ┆ null ┆ (2) 3-9 │
│ (3) 9-18 ┆ 110.614416 ┆ 2024-12-14 ┆ BH393780 Corp ┆ (3) 9-18 │
│ (4) 18-30 ┆ 135.160279 ┆ 2024-12-14 ┆ BH393781 Corp ┆ (4) 18-30 │
│ (5) 30+ ┆ 150.713405 ┆ 2024-12-14 ┆ BH393782 Corp ┆ (5) 30+ │
└───────────┴─────────────────┴────────────┴───────────────┴───────────┘
with BQuery() as bq:
results = bq.bql(
"""
let(#ema20=emavg(period=20);
#ema200=emavg(period=200);
#rsi=rsi(close=px_last());)
get(name(), #ema20, #ema200, #rsi)
for(filter(members('OMX Index'),
and(#ema20 > #ema200, #rsi > 53)))
with(fill=PREV)
"""
)
print(results.combine())
Output:
┌─────────────────┬──────────────────┬────────────┬────────────┬──────────┬────────────┬───────────┐
│ ID ┆ name() ┆ #ema20 ┆ DATE ┆ CURRENCY ┆ #ema200 ┆ #rsi │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ f64 ┆ date ┆ str ┆ f64 ┆ f64 │
╞═════════════════╪══════════════════╪════════════╪════════════╪══════════╪════════════╪═══════════╡
│ ERICB SS Equity ┆ Telefonaktiebola ┆ 90.152604 ┆ 2024-12-16 ┆ SEK ┆ 75.072151 ┆ 56.010028 │
│ ┆ get LM Ericsso ┆ ┆ ┆ ┆ ┆ │
│ ABB SS Equity ┆ ABB Ltd ┆ 630.622469 ┆ 2024-12-16 ┆ SEK ┆ 566.571183 ┆ 53.763102 │
│ SEBA SS Equity ┆ Skandinaviska ┆ 153.80595 ┆ 2024-12-16 ┆ SEK ┆ 150.742394 ┆ 56.460733 │
│ ┆ Enskilda Banken ┆ ┆ ┆ ┆ ┆ │
│ ASSAB SS Equity ┆ Assa Abloy AB ┆ 339.017591 ┆ 2024-12-16 ┆ SEK ┆ 317.057573 ┆ 53.351619 │
└─────────────────┴──────────────────┴────────────┴────────────┴──────────┴────────────┴───────────┘
# Get Bond Universe from Equity Ticker
query = """
let(#rank=normalized_payment_rank();
#oas=spread(st=oas);
#nxt_call=nxt_call_dt();
)
get(name(), #rank, #nxt_call, #oas)
for(filter(bonds('GTN US Equity'), series() == '144A'))
"""
with BQuery() as bq:
results = bq.bql(query)
df = results.combine()
print(df)
Output:
┌───────────────┬───────────────────┬──────────────────┬────────────┬────────────┬────────────┐
│ ID ┆ name() ┆ #rank ┆ #nxt_call ┆ #oas ┆ DATE │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ date ┆ f64 ┆ date │
╞═══════════════╪═══════════════════╪══════════════════╪════════════╪════════════╪════════════╡
│ YX231113 Corp ┆ GTN 10 ½ 07/15/29 ┆ 1st Lien Secured ┆ 2026-07-15 ┆ 598.66491 ┆ 2024-12-17 │
│ BS116983 Corp ┆ GTN 5 ⅜ 11/15/31 ┆ Sr Unsecured ┆ 2026-11-15 ┆ 1193.17529 ┆ 2024-12-17 │
│ AV438089 Corp ┆ GTN 7 05/15/27 ┆ Sr Unsecured ┆ 2024-12-24 ┆ 400.340456 ┆ 2024-12-17 │
│ ZO860846 Corp ┆ GTN 4 ¾ 10/15/30 ┆ Sr Unsecured ┆ 2025-10-15 ┆ 1249.34346 ┆ 2024-12-17 │
│ LW375188 Corp ┆ GTN 5 ⅞ 07/15/26 ┆ Sr Unsecured ┆ 2025-01-13 ┆ 173.761744 ┆ 2024-12-17 │
└───────────────┴───────────────────┴──────────────────┴────────────┴────────────┴────────────┘
This is example of a single-item query returning total return for all GTN bonds in a long dataframe. We can easily pivot it into wide format, as in the example below
# Total Return of GTN Bonds
query = """
let(#rng = range(-1M, 0D);
#rets = return_series(calc_interval=#rng,per=W);)
get(#rets)
for(filter(bonds('GTN US Equity'), series() == '144A'))
"""
with BQuery() as bq:
results = bq.bql(query)
df = results[0].pivot(on="ID", index="DATE", values="#rets")
print(df)
Output:
shape: (6, 6)
┌────────────┬───────────────┬───────────────┬───────────────┬───────────────┬───────────────┐
│ DATE ┆ YX231113 Corp ┆ BS116983 Corp ┆ AV438089 Corp ┆ ZO860846 Corp ┆ LW375188 Corp │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ date ┆ f64 ┆ f64 ┆ f64 ┆ f64 ┆ f64 │
╞════════════╪═══════════════╪═══════════════╪═══════════════╪═══════════════╪═══════════════╡
│ 2024-11-17 ┆ null ┆ null ┆ null ┆ null ┆ null │
│ 2024-11-24 ┆ 0.001653 ┆ 0.051179 ┆ 0.020363 ┆ 0.001371 ┆ -0.002939 │
│ 2024-12-01 ┆ 0.002837 ┆ 0.010405 ┆ -0.001466 ┆ 0.007275 ┆ 0.000581 │
│ 2024-12-08 ┆ -0.000041 ┆ 0.016145 ┆ 0.000766 ┆ 0.024984 ┆ 0.000936 │
│ 2024-12-15 ┆ 0.001495 ┆ -0.047 ┆ -0.000233 ┆ -0.043509 ┆ 0.002241 │
│ 2024-12-17 ┆ 0.00008 ┆ -0.000004 ┆ -0.0035 ┆ -0.007937 ┆ 0.000064 │
└────────────┴───────────────┴───────────────┴───────────────┴───────────────┴───────────────┘
query = """
let(#mv=sum(group(amt_outstanding(currency=USD),
by=[year(maturity()), industry_sector()]));)
get(#mv)
for(members('LF98TRUU Index'))
"""
with BQuery() as bq:
results = bq.bql(query)
df = results.combine().rename(
{"YEAR(MATURITY())": "maturity", "INDUSTRY_SECTOR()": "sector", "#mv": "mv"}
)
print(df.pivot(index="maturity", on="sector", values="mv").head())
Output:
shape: (5, 11)
┌──────────┬───────────┬───────────┬───────────┬───┬───────────┬───────────┬───────────┬───────────┐
│ maturity ┆ Basic ┆ Consumer, ┆ Energy ┆ … ┆ Financial ┆ Technolog ┆ Utilities ┆ Diversifi │
│ --- ┆ Materials ┆ Non-cycli ┆ --- ┆ ┆ --- ┆ y ┆ --- ┆ ed │
│ i64 ┆ --- ┆ cal ┆ f64 ┆ ┆ f64 ┆ --- ┆ f64 ┆ --- │
│ ┆ f64 ┆ --- ┆ ┆ ┆ ┆ f64 ┆ ┆ f64 │
│ ┆ ┆ f64 ┆ ┆ ┆ ┆ ┆ ┆ │
╞══════════╪═══════════╪═══════════╪═══════════╪═══╪═══════════╪═══════════╪═══════════╪═══════════╡
│ 2025 ┆ 1.5e8 ┆ 5.34916e8 ┆ 5e8 ┆ … ┆ null ┆ null ┆ null ┆ null │
│ 2026 ┆ 4.4013e9 ┆ 9.3293e9 ┆ 8.2931e9 ┆ … ┆ 1.3524e10 ┆ 4.0608e9 ┆ 2.5202e9 ┆ null │
│ 2027 ┆ 8.3921e9 ┆ 2.3409e10 ┆ 1.2427e10 ┆ … ┆ 1.9430e10 ┆ 4.3367e9 ┆ 3.6620e9 ┆ null │
│ 2028 ┆ 1.4701e10 ┆ 3.7457e10 ┆ 2.2442e10 ┆ … ┆ 2.3341e10 ┆ 9.9143e9 ┆ 7.6388e9 ┆ 5e8 │
│ 2029 ┆ 1.6512e10 ┆ 5.7381e10 ┆ 3.9286e10 ┆ … ┆ 4.2337e10 ┆ 2.2660e10 ┆ 5.8558e9 ┆ null │
└──────────┴───────────┴───────────┴───────────┴───┴───────────┴───────────┴───────────┴───────────┘
-
API Documentation: Detailed documentation and function references are available in https://marekozana.github.io/polars-bloomberg
-
Additional Examples: Check out examples/ for hands-on notebooks demonstrating a variety of use cases.
- BQL examples and use cases: examples/Examples-BQL.ipynb
-
Bloomberg Developer Resources: For more details on the Bloomberg API itself, visit the Bloomberg Developer's page.