Skip to content

Exploring Few-Shot Adaptation of Language Models with Tables

Notifications You must be signed in to change notification settings

JunShern/few-shot-adaptation

Repository files navigation

few-shot-adaptation

This repository contains code and resources for the paper Few-shot Adaptation Works with UnpredicTable Data by Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer and Ethan Perez.

Tables-to-tasks

This repository contains submodules. To clone the full repository along with submodules (required for reproducing training/results), please use

git clone --recurse-submodules [email protected]:JunShern/few-shot-adaptation.git

UnpredicTable dataset

Download

Our datasets are available on the HuggingFace Hub. We provide the complete dataset UnpredicTable-full as well as the various sub-distributions discussed in our paper, for a total of 57 dataset options.

To download a dataset, simply pip install datasets and download the dataset using load_dataset:

from datasets import load_dataset

distribution_names = [
    # Full dataset
    "MicPie/unpredictable_full",
    # 5k random tasks from full dataset
    "MicPie/unpredictable_5k",
    # Filtered to 1 task per website
    "MicPie/unpredictable_unique",
    #  Single website tasks
    "MicPie/unpredictable_baseball-fantasysports-yahoo-com",
    "MicPie/unpredictable_bulbapedia-bulbagarden-net",
    "MicPie/unpredictable_cappex-com",
    "MicPie/unpredictable_cram-com",
    "MicPie/unpredictable_dividend-com",
    "MicPie/unpredictable_dummies-com",
    "MicPie/unpredictable_en-wikipedia-org",
    "MicPie/unpredictable_ensembl-org",
    "MicPie/unpredictable_gamefaqs-com",
    "MicPie/unpredictable_mgoblog-com",
    "MicPie/unpredictable_mmo-champion-com",
    "MicPie/unpredictable_msdn-microsoft-com",
    "MicPie/unpredictable_phonearena-com",
    "MicPie/unpredictable_sittercity-com",
    "MicPie/unpredictable_sporcle-com",
    "MicPie/unpredictable_studystack-com",
    "MicPie/unpredictable_support-google-com",
    "MicPie/unpredictable_w3-org",
    "MicPie/unpredictable_wiki-openmoko-org",
    "MicPie/unpredictable_wkdu-org",
    # Single cluster tasks
    "MicPie/unpredictable_cluster00", "MicPie/unpredictable_cluster01", "MicPie/unpredictable_cluster02", "MicPie/unpredictable_cluster03", "MicPie/unpredictable_cluster04", "MicPie/unpredictable_cluster05", "MicPie/unpredictable_cluster06", "MicPie/unpredictable_cluster07", "MicPie/unpredictable_cluster08", "MicPie/unpredictable_cluster09", "MicPie/unpredictable_cluster10", "MicPie/unpredictable_cluster11", "MicPie/unpredictable_cluster12", "MicPie/unpredictable_cluster13", "MicPie/unpredictable_cluster14", "MicPie/unpredictable_cluster15", "MicPie/unpredictable_cluster16", "MicPie/unpredictable_cluster17", "MicPie/unpredictable_cluster18", "MicPie/unpredictable_cluster19", "MicPie/unpredictable_cluster20", "MicPie/unpredictable_cluster21", "MicPie/unpredictable_cluster22", "MicPie/unpredictable_cluster23", "MicPie/unpredictable_cluster24", "MicPie/unpredictable_cluster25", "MicPie/unpredictable_cluster26", "MicPie/unpredictable_cluster27", "MicPie/unpredictable_cluster28", "MicPie/unpredictable_cluster29", "MicPie/unpredictable_cluster-noise", 
    # Manual-rated tasks
    "MicPie/unpredictable_rated-low", "MicPie/unpredictable_rated-medium", "MicPie/unpredictable_rated-high",
]

# Get the 5k sample dataset
dataset = load_dataset('MicPie/unpredictable_5k')

We provide a demo of loading and inspecting tasks from the dataset at dataset_demo.ipynb. Click the badge below to try it out with Colab!

Open In Colab

Recreate

This section provides instructions for recreating the UnpredicTable dataset.

Install requirements:

conda create -n unpredictable python=3.8
conda activate unpredictable
python -m pip install -r requirements.txt

Recreating the dataset involves the following steps:

  1. Download the English-Language Relational Web Tables 2015 source tables from WDC Web Table Corpus 2015.
  2. Extract the files.
  3. Convert the tables into tasks (.jsonl format).

Since the source tables are provided as 51 separate slices, we process each of the slices separately:

SLICE="00" # Repeat for each of 00, 01, 02 ... 50
# Download
wget http://data.dws.informatik.uni-mannheim.de/webtables/2015-07/englishCorpus/compressed/$SLICE.tar.gz
# Extract
tar -xvf $SLICE.tar.gz
# Convert
python tables_to_tasks.py --tarfile $SLICE.tar --outdir ./unpredictable/ --max_source_files 10000

For convenience, we provide sbatch scripts for performing the the above steps in a parallelized manner on a SLURM system. To download and extract all 51 slices via 51 parallel batch jobs, simply run bash download_and_process_all.sh. (Caution: Will generate ~150GB and ~500k files)

MetaICL training and evaluation

This section provides instructions for reproducing our main results with MetaICL.

We provide a modified fork of the MetaICL repository as a submodule to simplify working with our dataset. If few-shot-adaptation/MetaICL does not exist, you can run the following command from the root of this repository to get it:

git submodule update --init

To install the required dependencies, please follow the "Installation" section of MetaICL/README.md.

Model weights & Training

The weights for our fine-tuned GPT2-large model can be downloaded below:

  • Fine-tuned on UnpredicTable-5k - weights
  • Fine-tuned on support.google.com - weights

To train your own models, please follow the instructions in the "Training" section of MetaICL/README.md.

For training on our task datasets, you can use the HuggingFace dataset path with the prefix "huggingface:" as the $task. For example, to train on MicPie/unpredictable_5k, use

cd MetaICL/

task="huggingface:MicPie/unpredictable_5k"
python train.py \
  --task $task --k 16384 --test_k 16 --seed 100 --use_demonstrations --method channel \
  --do_tensorize --n_gpu 8 --n_process 40
python -m torch.distributed.launch --nproc_per_node=8 train.py \
  --task $task --k 16384 --test_k 16 --seed 100 --train_seed 1 --use_demonstrations --method channel --n_gpu 8 \
  --batch_size 1 --lr 1e-05 --fp16 --optimization 8bit-adam --out_dir checkpoints/channel-metaicl/$task

Evaluation

Given the trained model, you can use the MetaICL/reproduce.sh script to evaluate the test scores for each of the task settings:

cd MetaICL/

MODEL_PATH="/PATH/TO/gpt2large-unpredictable5k.pt"
bash reproduce.sh hr_to_lr metaicl 100,13,21,42,87 32 $MODEL_PATH
bash reproduce.sh class_to_class metaicl 100,13,21,42,87 32 $MODEL_PATH
bash reproduce.sh qa_to_qa metaicl 100,13,21,42,87 32 $MODEL_PATH
bash reproduce.sh non_nli_to_nli metaicl 100,13,21,42,87 32 $MODEL_PATH
bash reproduce.sh non_paraphrase_to_paraphrase metaicl 100,13,21,42,87 32 $MODEL_PATH

Citation

@misc{chan2022few,
  author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
  title = {Few-shot Adaptation Works with UnpredicTable Data},
  publisher={arXiv},
  year = {2022},
  url = {https://arxiv.org/abs/2208.01009}
}

About

Exploring Few-Shot Adaptation of Language Models with Tables

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published