forked from tomasr8/fastslam64
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_fsonline.py
94 lines (71 loc) · 2.32 KB
/
config_fsonline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import json
import numpy as np
from lib.utils import dotify
import math
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
def lidar_to_global(cones, x, y, heading):
cones = np.array(cones).copy()
cones[:, 0] += 1.2
R = np.float32([
[np.cos(heading), -np.sin(heading)],
[np.sin(heading), np.cos(heading)]
])
cones = np.matmul(R, cones.T).T
cones[:, 0] += x
cones[:, 1] += y
return cones
def process(data, N):
odom = []
measurements = []
for i in range(N):
x, y, theta = data[i]["true_odom"]
theta = pi_2_pi(theta)
odom.append([x, y, theta])
cones = data[i]["measurements"]
cones = lidar_to_global(cones, x, y, theta)
measurements.append([])
for cone in cones:
cone[0], cone[1] = cone[1], cone[0]
cone[1] += 2
cone[0] *= -1
measurements[-1].append(cone)
odom = np.array(odom)
odom[:, [0, 1, 2]] = odom[:, [1, 0, 2]]
odom[:, 1] +=2
odom[:, 0] *= -1
odom[:, 2] += np.pi/2
odom[:, 2] = pi_2_pi(odom[:, 2])
return odom, measurements
with open("fsonline/measurements.json") as f:
data = json.load(f)
N = len(data)
true_odom, measurements = process(data, N)
xavier_odom = np.load("fsonline/odom.npy")
config = {
"SEED": 9,
"N": 1024, # number of particles
"DT": 1.0,
"THREADS": 512, # number threads in a block
"GPU_HEAP_SIZE_BYTES": 2 * 100000 * 1024, # available GPU heap size
"THRESHOLD": 3.25,
"sensor": {
"RANGE": 30,
"FOV": np.pi,
"VARIANCE": [0.2 ** 2, np.deg2rad(15.0) ** 2],
"MAX_MEASUREMENTS": 100, # upper bound on the total number of simultaneous measurements
"MEASUREMENTS": measurements,
"MISS_PROB": 0
},
"ODOMETRY": true_odom,
"EST_ODOMETRY": xavier_odom,
"ODOMETRY_VARIANCE": [0.1, 0.1, 0.01],
"LANDMARKS": np.load("fsonline/track.npy").astype(np.float64), # landmark positions
"MAX_LANDMARKS": 1000, # upper bound on the total number of landmarks in the environment
"START_POSITION": true_odom[0].copy()
}
config = dotify(config)
config.sensor.COVARIANCE = \
np.diag(config.sensor.VARIANCE).astype(np.float64)
config.PARTICLES_PER_THREAD = config.N // config.THREADS
config.PARTICLE_SIZE = 6 + 7*config.MAX_LANDMARKS