Matlab implementation of the Bayesian Fuzzy Clustering algorithms. Please cite this code when you use it: Taylor Glenn, Alina Zare & Paul Gader. (2019, April 12). GatorSense/BayesianFuzzyClustering: Initial Release (Version v1.0). Zenodo. http://doi.org/10.5281/zenodo.2638099
See related paper, doi: 10.1109/TFUZZ.2014.2370676, http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6955803
NOTE: If Bayesian Fuzzy Clustering is used in any publication or presentation, the following reference must be cited:
Glenn, T.; Zare, A.; Gader, P., "Bayesian Fuzzy Clustering," IEEE Transactions on Fuzzy Systems, vol.23, no.5, pp.1545-1561
doi: 10.1109/TFUZZ.2014.2370676
Requirements:
This code uses the excellent Lightspeed and Fastfit toolboxes by Tom Minka:
Lightspeed toolbox - http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/
Fastfit toolbox - http://research.microsoft.com/en-us/um/people/minka/software/fastfit/
This code also uses the Matlab Fuzzy Logic Toolbox for its fcm impleSeementation
Contents:
bfc/ % code for Bayesian Fuzzy Clustering MCMC sampler
|- bfc_params.m % generate default parameters structure
|- bfc_sampler.m % bayesian fuzzy clustering sampler
|- test.m % test script - run this
ibfc/ % code for Infinite Bayesian Fuzzy Clustering particle filter
|- ibfc_pf_params.m % generate defaults parameters structure
|- ibfc_pf.m % IBFC particle filter
|- u_update_ibfc.m % membership update function
|- c_update_ibfc.m % cluster prototype update function
|- ll_ibfc.m % ibfc log-likelihood evaluation function
|- test.m % test script - run this