Skip to content

[NeurIPS 2024 Best Paper][GPT beats diffusion🔥] [scaling laws in visual generation📈] Official impl. of "Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction". An *ultra-simple, user-friendly yet state-of-the-art* codebase for autoregressive image generation!

License

Notifications You must be signed in to change notification settings

FoundationVision/VAR

Repository files navigation

VAR: a new visual generation method elevates GPT-style models beyond diffusion🚀 & Scaling laws observed📈

demo platform  arXiv  huggingface weights  SOTA

Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction

NeurIPS 2024 Best Paper


News

  • 2024-12: 🏆 VAR received NeurIPS 2024 Best Paper Award.
  • 2024-12: 🔥 We Release our Text-to-Image research based on VAR, please check Infinity.
  • 2024-09: VAR is accepted as NeurIPS 2024 Oral Presentation.
  • 2024-04: Visual AutoRegressive modeling is released.

🕹️ Try and Play with VAR!

We provide a demo website for you to play with VAR models and generate images interactively. Enjoy the fun of visual autoregressive modeling!

We provide a demo website for you to play with VAR Text-to-Image and generate images interactively. Enjoy the fun of visual autoregressive modeling!

We also provide demo_sample.ipynb for you to see more technical details about VAR.

What's New?

🔥 Introducing VAR: a new paradigm in autoregressive visual generation✨:

Visual Autoregressive Modeling (VAR) redefines the autoregressive learning on images as coarse-to-fine "next-scale prediction" or "next-resolution prediction", diverging from the standard raster-scan "next-token prediction".

🔥 For the first time, GPT-style autoregressive models surpass diffusion models🚀:

🔥 Discovering power-law Scaling Laws in VAR transformers📈:

🔥 Zero-shot generalizability🛠️:

For a deep dive into our analyses, discussions, and evaluations, check out our paper.

VAR zoo

We provide VAR models for you to play with, which are on or can be downloaded from the following links:

model reso. FID rel. cost #params HF weights🤗
VAR-d16 256 3.55 0.4 310M var_d16.pth
VAR-d20 256 2.95 0.5 600M var_d20.pth
VAR-d24 256 2.33 0.6 1.0B var_d24.pth
VAR-d30 256 1.97 1 2.0B var_d30.pth
VAR-d30-re 256 1.80 1 2.0B var_d30.pth
VAR-d36 512 2.63 - 2.3B var_d36.pth

You can load these models to generate images via the codes in demo_sample.ipynb. Note: you need to download vae_ch160v4096z32.pth first.

Installation

  1. Install torch>=2.0.0.

  2. Install other pip packages via pip3 install -r requirements.txt.

  3. Prepare the ImageNet dataset

    assume the ImageNet is in `/path/to/imagenet`. It should be like this:
    /path/to/imagenet/:
        train/:
            n01440764: 
                many_images.JPEG ...
            n01443537:
                many_images.JPEG ...
        val/:
            n01440764:
                ILSVRC2012_val_00000293.JPEG ...
            n01443537:
                ILSVRC2012_val_00000236.JPEG ...
    

    NOTE: The arg --data_path=/path/to/imagenet should be passed to the training script.

  4. (Optional) install and compile flash-attn and xformers for faster attention computation. Our code will automatically use them if installed. See models/basic_var.py#L15-L30.

Training Scripts

To train VAR-{d16, d20, d24, d30, d36-s} on ImageNet 256x256 or 512x512, you can run the following command:

# d16, 256x256
torchrun --nproc_per_node=8 --nnodes=... --node_rank=... --master_addr=... --master_port=... train.py \
  --depth=16 --bs=768 --ep=200 --fp16=1 --alng=1e-3 --wpe=0.1
# d20, 256x256
torchrun --nproc_per_node=8 --nnodes=... --node_rank=... --master_addr=... --master_port=... train.py \
  --depth=20 --bs=768 --ep=250 --fp16=1 --alng=1e-3 --wpe=0.1
# d24, 256x256
torchrun --nproc_per_node=8 --nnodes=... --node_rank=... --master_addr=... --master_port=... train.py \
  --depth=24 --bs=768 --ep=350 --tblr=8e-5 --fp16=1 --alng=1e-4 --wpe=0.01
# d30, 256x256
torchrun --nproc_per_node=8 --nnodes=... --node_rank=... --master_addr=... --master_port=... train.py \
  --depth=30 --bs=1024 --ep=350 --tblr=8e-5 --fp16=1 --alng=1e-5 --wpe=0.01 --twde=0.08
# d36-s, 512x512 (-s means saln=1, shared AdaLN)
torchrun --nproc_per_node=8 --nnodes=... --node_rank=... --master_addr=... --master_port=... train.py \
  --depth=36 --saln=1 --pn=512 --bs=768 --ep=350 --tblr=8e-5 --fp16=1 --alng=5e-6 --wpe=0.01 --twde=0.08

A folder named local_output will be created to save the checkpoints and logs. You can monitor the training process by checking the logs in local_output/log.txt and local_output/stdout.txt, or using tensorboard --logdir=local_output/.

If your experiment is interrupted, just rerun the command, and the training will automatically resume from the last checkpoint in local_output/ckpt*.pth (see utils/misc.py#L344-L357).

Sampling & Zero-shot Inference

For FID evaluation, use var.autoregressive_infer_cfg(..., cfg=1.5, top_p=0.96, top_k=900, more_smooth=False) to sample 50,000 images (50 per class) and save them as PNG (not JPEG) files in a folder. Pack them into a .npz file via create_npz_from_sample_folder(sample_folder) in utils/misc.py#L344. Then use the OpenAI's FID evaluation toolkit and reference ground truth npz file of 256x256 or 512x512 to evaluate FID, IS, precision, and recall.

Note a relatively small cfg=1.5 is used for trade-off between image quality and diversity. You can adjust it to cfg=5.0, or sample with autoregressive_infer_cfg(..., more_smooth=True) for better visual quality. We'll provide the sampling script later.

Third-party Usage and Research

In this pargraph, we cross link third-party repositories or research which use VAR and report results. You can let us know by raising an issue

(Note please report accuracy numbers and provide trained models in your new repository to facilitate others to get sense of correctness and model behavior)

[12/30/2024] Next Token Prediction Towards Multimodal Intelligence: https://github.com/LMM101/Awesome-Multimodal-Next-Token-Prediction

[12/30/2024] Varformer: Adapting VAR’s Generative Prior for Image Restoration: https://arxiv.org/abs/2412.21063

[12/22/2024] Distilled Decoding 1: One-step Sampling of Image Auto-regressive Models with Flow Matching: https://github.com/imagination-research/distilled-decoding

[12/19/2024] FlowAR: Scale-wise Autoregressive Image Generation Meets Flow Matching: https://github.com/OliverRensu/FlowAR

[12/13/2024] 3D representation in 512-Byte: Variational tokenizer is the key for autoregressive 3D generation: https://github.com/sparse-mvs-2/VAT

[12/19/2024] FlowAR: Scale-wise Autoregressive Image Generation Meets Flow Matching: https://github.com/OliverRensu/FlowAR

[12/9/2024] CARP: Visuomotor Policy Learning via Coarse-to-Fine Autoregressive Prediction: https://carp-robot.github.io/

[12/5/2024] Infinity ∞: Scaling Bitwise AutoRegressive Modeling for High-Resolution Image Synthesis: https://github.com/FoundationVision/Infinity

[12/5/2024] Switti: Designing Scale-Wise Transformers for Text-to-Image Synthesis: https://github.com/yandex-research/switti

[12/4/2024] TokenFlow🚀: Unified Image Tokenizer for Multimodal Understanding and Generation: https://github.com/ByteFlow-AI/TokenFlow

[12/3/2024] XQ-GAN🚀: An Open-source Image Tokenization Framework for Autoregressive Generation: https://github.com/lxa9867/ImageFolder

[11/28/2024] CoDe: Collaborative Decoding Makes Visual Auto-Regressive Modeling Efficient: https://github.com/czg1225/CoDe

[11/27/2024] SAR3D: Autoregressive 3D Object Generation and Understanding via Multi-scale 3D VQVAE: https://github.com/cyw-3d/SAR3D

[11/26/2024] LiteVAR: Compressing Visual Autoregressive Modelling with Efficient Attention and Quantization: https://arxiv.org/abs/2411.17178

[11/28/2024] Scalable Autoregressive Monocular Depth Estimation: https://arxiv.org/abs/2411.11361

[11/15/2024] M-VAR: Decoupled Scale-wise Autoregressive Modeling for High-Quality Image Generation: https://github.com/OliverRensu/MVAR

[10/14/2024] HART: Efficient Visual Generation with Hybrid Autoregressive Transformer: https://github.com/mit-han-lab/hart

[10/3/2024] ImageFolder🚀: Autoregressive Image Generation with Folded Tokens: https://github.com/lxa9867/ImageFolder

[07/25/2024] ControlVAR: Exploring Controllable Visual Autoregressive Modeling: https://github.com/lxa9867/ControlVAR

[07/3/2024] VAR-CLIP: Text-to-Image Generator with Visual Auto-Regressive Modeling: https://github.com/daixiangzi/VAR-CLIP

[06/16/2024] STAR: Scale-wise Text-to-image generation via Auto-Regressive representations: https://arxiv.org/abs/2406.10797

License

This project is licensed under the MIT License - see the LICENSE file for details.

Citation

If our work assists your research, feel free to give us a star ⭐ or cite us using:

@Article{VAR,
      title={Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction}, 
      author={Keyu Tian and Yi Jiang and Zehuan Yuan and Bingyue Peng and Liwei Wang},
      year={2024},
      eprint={2404.02905},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@misc{Infinity,
    title={Infinity: Scaling Bitwise AutoRegressive Modeling for High-Resolution Image Synthesis}, 
    author={Jian Han and Jinlai Liu and Yi Jiang and Bin Yan and Yuqi Zhang and Zehuan Yuan and Bingyue Peng and Xiaobing Liu},
    year={2024},
    eprint={2412.04431},
    archivePrefix={arXiv},
    primaryClass={cs.CV},
    url={https://arxiv.org/abs/2412.04431}, 
}

About

[NeurIPS 2024 Best Paper][GPT beats diffusion🔥] [scaling laws in visual generation📈] Official impl. of "Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction". An *ultra-simple, user-friendly yet state-of-the-art* codebase for autoregressive image generation!

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •