Skip to content

EleutherAI/clearnets

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Clearnets

Development of and interpretability using disentangled architectures.

Train

Contains code for training sparse feedforward transformers, regular transformers, SAEs, and Transcoders.

Train GptNeoX-style base transformers with either sparse or dense feedforwards:

python -m clearnets.train.train_transformer
python -m clearnets.train.train_transformer --dense
python -m clearnets.train.train_transformer --dense --dataset "lennart-finke/SimpleStories" --tokenizer "EleutherAI/gpt-neo-125m"

sparse_gptneox and sparse_gptneox_config are both modified from the GptNeoX implementation in HuggingFace transformers with a flag to enable training with sparse feedforwards.

Train a comparison SAE or transcoder on a dense feedforward transformer using:

python -m clearnets.train.train_sae_cli --run_name Transcoder-roneneldan--TinyStories-8M --ckpt "data/roneneldan--TinyStories/Dense-TinyStories8M-s=42-full-vocab/checkpoints/last.ckpt" --hookpoints transformer.h.*.mlp --ctx_len 512 --batch_size 128 --grad_acc_steps 2 --max_examples 768_000 --transcode

Autointerp

Contains scripts for evaluating trained models using sae-auto-interp.

First, populate the cache with activations from a trained model or its auxiliary SAE/transcoder:

python -m clearnets.autointerp.populate_feature_cache_sae --dataset_repo "roneneldan/TinyStories" --dataset_split "train[:2%]" --dataset_row "text" --n_tokens 10_000_000 --model_ckpt "/mnt/ssd-1/lucia/clearnets/data/roneneldan--TinyStories/Dense-TinyStories8M-s=42-full-vocab/checkpoints/last.ckpt" --sae_dir "/mnt/ssd-1/lucia/clearnets/data/sae/Transcoder-roneneldan--TinyStories-8M" --ctx_len 512 --tag "Transcoder-8M" --tokenizer_model "roneneldan/TinyStories-8M"

python -m clearnets.autointerp.populate_feature_cache_sae --dataset_repo "roneneldan/TinyStories" --dataset_split "train[:2%]" --dataset_row "text" --n_tokens 10_000_000 --model_ckpt "/mnt/ssd-1/lucia/clearnets/data/roneneldan--TinyStories/Dense-TinyStories8M-s=42-full-vocab/checkpoints/last.ckpt" --sae_dir "/mnt/ssd-1/lucia/clearnets/data/sae/SAE-roneneldan--TinyStories-8M" --ctx_len 512 --tag "SAE-8M" --tokenizer_model "roneneldan/TinyStories-8M"

python -m clearnets.autointerp.populate_feature_cache_sparse --dataset_repo "roneneldan/TinyStories" --dataset_split "train[:2%]" --dataset_row "text" --n_tokens 10_000_000 --model "Sparse-TinyStories8M-s=42-full-vocab" --ctx_len 512 

Then run an autointerp pipeline and visualize the results. To get this working you need to update a line in the autointerp library from: tokenizer._pad_token = tokenizer._eos_token to: tokenizer._pad_token = tokenizer._eos_token if hasattr(tokenizer, "_eos_token") else tokenizer.eos_token

python -m clearnets.autointerp.autointerp_explain --model "roneneldan--TinyStories/Sparse-TinyStories8M-s=42-full-vocab" --modules "roneneldan/TinyStories/Sparse-8M-last/.transformer.h.0.mlp" "roneneldan/TinyStories/Sparse-8M-last/.transformer.h.1.mlp" "roneneldan/TinyStories/Sparse-8M-last/.transformer.h.2.mlp" "roneneldan/TinyStories/Sparse-8M-last/.transformer.h.3.mlp" "roneneldan/TinyStories/Sparse-8M-last/.transformer.h.4.mlp" "roneneldan/TinyStories/Sparse-8M-last/.transformer.h.5.mlp" "roneneldan/TinyStories/Sparse-8M-last/.transformer.h.7.mlp" --n_random 50 --n_examples_test 50 --train_type "quantiles" --n_examples_train 40 --n_quantiles 10 --width 8192

python -m clearnets.autointerp.autointerp_explain --model "roneneldan--TinyStories/Dense-TinyStories8M-s=42-full-vocab" --modules "roneneldan/TinyStories/SAE-8M/.transformer.h.0.mlp" "roneneldan/TinyStories/SAE-8M/.transformer.h.1.mlp" "roneneldan/TinyStories/SAE-8M/.transformer.h.2.mlp" "roneneldan/TinyStories/SAE-8M/.transformer.h.3.mlp" "roneneldan/TinyStories/SAE-8M/.transformer.h.4.mlp" "roneneldan/TinyStories/SAE-8M/.transformer.h.5.mlp" "roneneldan/TinyStories/SAE-8M/.transformer.h.6.mlp" "roneneldan/TinyStories/SAE-8M/.transformer.h.7.mlp" --n_random 50 --n_examples_test 50 --train_type "quantiles" --n_examples_train 40 --n_quantiles 10 --width 8192

python -m clearnets.autointerp.autointerp_explain --model "roneneldan--TinyStories/Dense-TinyStories8M-s=42-full-vocab" --modules "roneneldan/TinyStories/Transcoder-8M/.transformer.h.0.mlp" "roneneldan/TinyStories/Transcoder-8M/.transformer.h.1.mlp" "roneneldan/TinyStories/Transcoder-8M/.transformer.h.2.mlp" "roneneldan/TinyStories/Transcoder-8M/.transformer.h.3.mlp" "roneneldan/TinyStories/Transcoder-8M/.transformer.h.4.mlp" "roneneldan/TinyStories/Transcoder-8M/.transformer.h.5.mlp" "roneneldan/TinyStories/Transcoder-8M/.transformer.h.6.mlp" "roneneldan/TinyStories/Transcoder-8M/.transformer.h.7.mlp" --n_random 50 --n_examples_test 50 --train_type "quantiles" --n_examples_train 40 --n_quantiles 10 --width 8192

python -m clearnets.autointerp.autointerp_plot

Generalization

Experiments for tracking generalization of neural networks using disentangled activations.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages