- Update config.yaml
- Update schema.yaml
- Update params.yaml
- Update the entity
- Update the configuration manager in src config
- Update the components
- Update the pipeline
- Update the main.py
- Update the app.py
- Data Ingestion
- Data Validation
- Data Transformation
- Model Trainer
- Model Evaluation
Clone the repository
git clone https://github.com/CodeWithCharan/End-to-End-MLOps-Project.git
conda create -n mlopsenv python=3.8 -y
conda activate mlopsenv
pip install -r requirements.txt
python app.py
http://127.0.0.1:8080
http://localhost:8080
mlflow ui
-
MLFLOW_TRACKING_URI = https://dagshub.com/CodeWithCharan/End-to-End-MLOps-Project.mlflow
-
MLFLOW_TRACKING_USERNAME = CodeWithCharan
-
MLFLOW_TRACKING_PASSWORD = YourAccessToken
export MLFLOW_TRACKING_URI=https://dagshub.com/CodeWithCharan/End-to-End-MLOps-Project.mlflow
export MLFLOW_TRACKING_USERNAME=CodeWithCharan
export MLFLOW_TRACKING_PASSWORD=YourAccessToken
Description: About the deployment
1. Build docker image of the source code
2. Push your docker image to ECR
3. Launch Your EC2
4. Pull Your image from ECR in EC2
5. Lauch your docker image in EC2
#with specific access
1. EC2 access : It is virtual machine
2. ECR: Elastic Container registry to save your docker image in aws
#Policy:
1. AmazonEC2ContainerRegistryFullAccess
2. AmazonEC2FullAccess
- Save the URI: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
#optinal
sudo apt-get update -y
sudo apt-get upgrade
#required
curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh
sudo usermod -aG docker ubuntu
newgrp docker
setting>actions>runner>new self hosted runner> choose os> then run command one by one
AWS_ACCESS_KEY_ID=
AWS_SECRET_ACCESS_KEY=
AWS_REGION = ap-south-1
AWS_ECR_LOGIN_URI =
ECR_REPOSITORY_NAME = mlproj
MLflow
- Its Production Grade
- Trace all of your expriements
- Logging & tagging your model