forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[V1] TP Ray executor (vllm-project#11107)
Signed-off-by: Rui Qiao <[email protected]>
- Loading branch information
1 parent
3fbf6aa
commit 1337208
Showing
5 changed files
with
617 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,339 @@ | ||
import os | ||
from collections import defaultdict | ||
from itertools import islice, repeat | ||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple | ||
|
||
import vllm.envs as envs | ||
from vllm.config import VllmConfig | ||
from vllm.logger import init_logger | ||
from vllm.utils import get_distributed_init_method, get_ip, get_open_port | ||
from vllm.v1.executor.abstract import Executor | ||
from vllm.v1.executor.ray_utils import RayWorkerWrapper, ray | ||
from vllm.v1.outputs import ModelRunnerOutput | ||
|
||
if ray is not None: | ||
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy | ||
|
||
if TYPE_CHECKING: | ||
from ray.util.placement_group import PlacementGroup | ||
|
||
logger = init_logger(__name__) | ||
|
||
|
||
class RayExecutor(Executor): | ||
|
||
def __init__(self, vllm_config: VllmConfig) -> None: | ||
self.vllm_config = vllm_config | ||
self.parallel_config = vllm_config.parallel_config | ||
self.model_config = vllm_config.model_config | ||
self.forward_dag: Optional[ray.dag.CompiledDAG] = None | ||
|
||
# Disable Ray usage stats collection. | ||
ray_usage = os.environ.get("RAY_USAGE_STATS_ENABLED", "0") | ||
if ray_usage != "1": | ||
os.environ["RAY_USAGE_STATS_ENABLED"] = "0" | ||
|
||
placement_group = self.parallel_config.placement_group | ||
# Create the parallel GPU workers. | ||
self._init_workers_ray(placement_group) | ||
|
||
def _init_workers_ray(self, placement_group: "PlacementGroup", | ||
**ray_remote_kwargs): | ||
# A list of workers to run a model. | ||
self.workers: List[RayWorkerWrapper] = [] | ||
if self.parallel_config.ray_workers_use_nsight: | ||
ray_remote_kwargs = self._configure_ray_workers_use_nsight( | ||
ray_remote_kwargs) | ||
|
||
# Create the workers. | ||
driver_ip = get_ip() | ||
for bundle_id, bundle in enumerate(placement_group.bundle_specs): | ||
if not bundle.get("GPU", 0): | ||
# Skip bundles that don't have GPUs, | ||
# as each worker needs one GPU. | ||
continue | ||
scheduling_strategy = PlacementGroupSchedulingStrategy( | ||
placement_group=placement_group, | ||
placement_group_capture_child_tasks=True, | ||
placement_group_bundle_index=bundle_id, | ||
) | ||
|
||
worker = ray.remote( | ||
num_cpus=0, | ||
num_gpus=1, | ||
scheduling_strategy=scheduling_strategy, | ||
**ray_remote_kwargs, | ||
)(RayWorkerWrapper).remote(vllm_config=self.vllm_config) | ||
self.workers.append(worker) | ||
|
||
logger.debug("workers: %s", self.workers) | ||
worker_ips = [ | ||
ray.get(worker.get_node_ip.remote()) # type: ignore[attr-defined] | ||
for worker in self.workers | ||
] | ||
ip_counts: Dict[str, int] = {} | ||
for ip in worker_ips: | ||
ip_counts[ip] = ip_counts.get(ip, 0) + 1 | ||
|
||
worker_to_ip = dict(zip(self.workers, worker_ips)) | ||
|
||
def sort_by_driver_then_worker_ip(worker): | ||
""" | ||
Sort the workers based on 3 properties: | ||
1. If the worker is on the same node as the driver (vllm engine), | ||
it should be placed first. | ||
2. Then, if the worker is on a node with fewer workers, it should | ||
be placed first. | ||
3. Finally, if the work is on a node with smaller IP address, it | ||
should be placed first. This is simply a tiebreaker to make | ||
sure the workers are sorted in a deterministic way. | ||
""" | ||
ip = worker_to_ip[worker] | ||
return (ip != driver_ip, ip_counts[ip], ip) | ||
|
||
# After sorting, the workers on the same node will be | ||
# close to each other, and the workers on the driver | ||
# node will be placed first. | ||
self.workers = sorted(self.workers, key=sort_by_driver_then_worker_ip) | ||
|
||
# Get the set of GPU IDs used on each node. | ||
worker_node_and_gpu_ids = self._run_workers("get_node_and_gpu_ids") | ||
|
||
node_workers = defaultdict(list) # node id -> list of worker ranks | ||
node_gpus = defaultdict(list) # node id -> list of gpu ids | ||
|
||
for i, (node_id, gpu_ids) in enumerate(worker_node_and_gpu_ids): | ||
node_workers[node_id].append(i) | ||
# `gpu_ids` can be a list of strings or integers. | ||
# convert them to integers for consistency. | ||
# NOTE: gpu_ids can be larger than 9 (e.g. 16 GPUs), | ||
# string sorting is not sufficient. | ||
# see https://github.com/vllm-project/vllm/issues/5590 | ||
gpu_ids = [int(x) for x in gpu_ids] | ||
node_gpus[node_id].extend(gpu_ids) | ||
|
||
for node_id, gpu_ids in node_gpus.items(): | ||
node_gpus[node_id] = sorted(gpu_ids) | ||
|
||
all_ips = set(worker_ips) | ||
n_ips = len(all_ips) | ||
n_nodes = len(node_workers) | ||
|
||
if n_nodes != n_ips: | ||
raise RuntimeError( | ||
f"Every node should have a unique IP address. Got {n_nodes}" | ||
f" nodes with node ids {list(node_workers.keys())} and " | ||
f"{n_ips} unique IP addresses {all_ips}. Please check your" | ||
" network configuration. If you set `VLLM_HOST_IP` or " | ||
"`HOST_IP` environment variable, make sure it is unique for" | ||
" each node.") | ||
|
||
# Set environment variables for the driver and workers. | ||
all_args_to_update_environment_variables = [({ | ||
"CUDA_VISIBLE_DEVICES": | ||
",".join(map(str, node_gpus[node_id])), | ||
"VLLM_TRACE_FUNCTION": | ||
str(envs.VLLM_TRACE_FUNCTION), | ||
"VLLM_USE_V1": | ||
str(int(envs.VLLM_USE_V1)), | ||
**({ | ||
"VLLM_ATTENTION_BACKEND": envs.VLLM_ATTENTION_BACKEND | ||
} if envs.VLLM_ATTENTION_BACKEND is not None else {}) | ||
}, ) for (node_id, _) in worker_node_and_gpu_ids] | ||
|
||
self._env_vars_for_all_workers = ( | ||
all_args_to_update_environment_variables) | ||
|
||
self._run_workers("update_environment_variables", | ||
all_args=self._get_env_vars_to_be_updated()) | ||
|
||
if len(node_gpus) == 1: | ||
# in single node case, we don't need to get the IP address. | ||
# the loopback address is sufficient | ||
# NOTE: a node may have several IP addresses, one for each | ||
# network interface. `get_ip()` might return any of them, | ||
# while they might not work for communication inside the node | ||
# if the network setup is complicated. Using the loopback address | ||
# solves this issue, as it always works for communication inside | ||
# the node. | ||
driver_ip = "127.0.0.1" | ||
distributed_init_method = get_distributed_init_method( | ||
driver_ip, get_open_port()) | ||
|
||
# Initialize the actual workers inside worker wrapper. | ||
init_worker_all_kwargs = [ | ||
self._get_worker_kwargs( | ||
local_rank=node_workers[node_id].index(rank), | ||
rank=rank, | ||
distributed_init_method=distributed_init_method, | ||
) for rank, (node_id, _) in enumerate(worker_node_and_gpu_ids) | ||
] | ||
self._run_workers("init_worker", all_kwargs=init_worker_all_kwargs) | ||
self._run_workers("initialize") | ||
self._run_workers("load_model") | ||
|
||
def _configure_ray_workers_use_nsight(self, | ||
ray_remote_kwargs) -> Dict[str, Any]: | ||
# If nsight profiling is enabled, we need to set the profiling | ||
# configuration for the ray workers as runtime env. | ||
runtime_env = ray_remote_kwargs.setdefault("runtime_env", {}) | ||
runtime_env.update({ | ||
"nsight": { | ||
"t": "cuda,cudnn,cublas", | ||
"o": "'worker_process_%p'", | ||
"cuda-graph-trace": "node", | ||
} | ||
}) | ||
|
||
return ray_remote_kwargs | ||
|
||
def _get_env_vars_to_be_updated(self): | ||
return self._env_vars_for_all_workers | ||
|
||
def _get_worker_kwargs( | ||
self, | ||
local_rank: int = 0, | ||
rank: int = 0, | ||
distributed_init_method: Optional[str] = None) -> Dict[str, Any]: | ||
""" | ||
Return worker init args for a given rank. | ||
""" | ||
if distributed_init_method is None: | ||
distributed_init_method = get_distributed_init_method( | ||
get_ip(), get_open_port()) | ||
return dict( | ||
vllm_config=self.vllm_config, | ||
local_rank=local_rank, | ||
rank=rank, | ||
distributed_init_method=distributed_init_method, | ||
) | ||
|
||
def determine_num_available_blocks(self) -> Tuple[int, int]: | ||
""" | ||
Determine the number of available KV blocks. | ||
This invokes `determine_num_available_blocks` on each worker and takes | ||
the min of the results, guaranteeing that the selected cache sizes are | ||
compatible with all workers. | ||
Returns: | ||
- tuple[num_gpu_blocks, num_cpu_blocks] | ||
""" | ||
# Get the maximum number of blocks that can be allocated on GPU and CPU. | ||
num_blocks = self._run_workers("determine_num_available_blocks") | ||
|
||
# Since we use a shared centralized controller, we take the minimum | ||
# number of blocks across all workers to make sure all the memory | ||
# operators can be applied to all workers. | ||
num_gpu_blocks = min(b[0] for b in num_blocks) | ||
num_cpu_blocks = min(b[1] for b in num_blocks) | ||
|
||
return num_gpu_blocks, num_cpu_blocks | ||
|
||
def initialize(self, num_gpu_blocks: int) -> None: | ||
""" | ||
Initialize the KV cache in all workers. | ||
""" | ||
# NOTE: This is logged in the executor because there can be >1 worker | ||
# with other executors. We could log in the engine level, but work | ||
# remains to abstract away the device for non-GPU configurations. | ||
logger.info("# GPU blocks: %d", num_gpu_blocks) | ||
self._run_workers("initialize_cache", num_gpu_blocks) | ||
self._run_workers("compile_or_warm_up_model") | ||
|
||
def _run_workers( | ||
self, | ||
method: str, | ||
*args, | ||
all_args: Optional[List[Tuple[Any, ...]]] = None, | ||
all_kwargs: Optional[List[Dict[str, Any]]] = None, | ||
**kwargs, | ||
) -> Any: | ||
""" | ||
Runs the given method on all workers. Can be used in the following | ||
ways: | ||
Args: | ||
- args/kwargs: All workers share the same args/kwargs | ||
- all_args/all_kwargs: args/kwargs for each worker are specified | ||
individually | ||
""" | ||
count = len(self.workers) | ||
all_worker_args = repeat(args, count) if all_args is None \ | ||
else islice(all_args, 0, None) | ||
all_worker_kwargs = repeat(kwargs, count) if all_kwargs is None \ | ||
else islice(all_kwargs, 0, None) | ||
|
||
ray_worker_refs = [ | ||
worker.execute_method.remote( # type: ignore[attr-defined] | ||
method, *worker_args, **worker_kwargs) | ||
for (worker, worker_args, worker_kwargs | ||
) in zip(self.workers, all_worker_args, all_worker_kwargs) | ||
] | ||
return ray.get(ray_worker_refs) | ||
|
||
def execute_model( | ||
self, | ||
scheduler_output, | ||
) -> ModelRunnerOutput: | ||
if self.forward_dag is None: | ||
self.forward_dag = self._compiled_ray_dag() | ||
# Only the first worker (with rank 0) returns the execution result. | ||
# Others return None. | ||
output = ray.get(self.forward_dag.execute(scheduler_output))[0] | ||
return output | ||
|
||
def profile(self, is_start=True): | ||
raise NotImplementedError | ||
|
||
def shutdown(self): | ||
if hasattr(self, "forward_dag") and self.forward_dag is not None: | ||
self.forward_dag.teardown() | ||
import ray | ||
for worker in self.workers: | ||
ray.kill(worker) | ||
self.forward_dag = None | ||
|
||
def check_health(self) -> None: | ||
logger.debug("Called check_health.") | ||
|
||
def _check_ray_compiled_graph_installation(self): | ||
import pkg_resources | ||
from packaging import version | ||
|
||
required_version = version.parse("2.39") | ||
current_version = version.parse( | ||
pkg_resources.get_distribution("ray").version) | ||
if current_version < required_version: | ||
raise ValueError(f"Ray version {required_version} is " | ||
f"required, but found {current_version}") | ||
|
||
import importlib.util | ||
raycg = importlib.util.find_spec("ray.experimental.compiled_dag_ref") | ||
if raycg is None: | ||
raise ValueError("Ray Compiled Graph is not installed. " | ||
"Run `pip install ray[adag]` to install it.") | ||
|
||
cupy_spec = importlib.util.find_spec("cupy") | ||
if cupy_spec is None and envs.VLLM_USE_RAY_COMPILED_DAG_NCCL_CHANNEL: | ||
raise ValueError( | ||
"cupy is not installed but required since " | ||
"VLLM_USE_RAY_COMPILED_DAG_NCCL_CHANNEL is set." | ||
"Run `pip install ray[adag]` and check cupy installation.") | ||
|
||
def _compiled_ray_dag(self): | ||
assert self.parallel_config.use_ray | ||
self._check_ray_compiled_graph_installation() | ||
from ray.dag import InputNode, MultiOutputNode | ||
|
||
with InputNode() as input_batches: | ||
outputs = [ | ||
worker.execute_model.bind( # type: ignore[attr-defined] | ||
input_batches) for worker in self.workers | ||
] | ||
forward_dag = MultiOutputNode(outputs) | ||
|
||
return forward_dag.experimental_compile() | ||
|
||
def __del__(self): | ||
self.shutdown() |
Oops, something went wrong.