forked from WindVChen/INR-Harmonization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocessing.py
308 lines (261 loc) · 16.1 KB
/
processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
import time
import datetime
import torch
import torchvision
from utils import misc, metrics
best_psnr = 0
def train(train_loader, val_loader, model, optimizer, scheduler, loss_fn, logger, opt):
total_step = opt.epochs * len(train_loader)
step_time_log = misc.AverageMeter()
loss_log = misc.AverageMeter(':6f')
loss_fg_content_bg_appearance_construct_log = misc.AverageMeter(':6f')
loss_lut_transform_image_log = misc.AverageMeter(':6f')
loss_lut_regularize_log = misc.AverageMeter(':6f')
start_epoch = 0
"Load pretrained checkpoints"
if opt.pretrained is not None:
logger.info(f"Load pretrained weight from {opt.pretrained}")
load_state = torch.load(opt.pretrained)
model = model.cpu()
model.load_state_dict(load_state['model'])
model = model.to(opt.device)
optimizer.load_state_dict(load_state['optimizer'])
scheduler.load_state_dict(load_state['scheduler'])
start_epoch = load_state['last_epoch'] + 1
for epoch in range(start_epoch, opt.epochs):
model.train()
time_ckp = time.time()
for step, batch in enumerate(train_loader):
current_step = epoch * len(train_loader) + step + 1
if opt.INRDecode and opt.hr_train:
"List with 4 elements: [Input to Encoder, three different resolutions' crop to INR Decoder]"
composite_image = [batch[f'composite_image{name}'].to(opt.device) for name in range(4)]
real_image = [batch[f'real_image{name}'].to(opt.device) for name in range(4)]
mask = [batch[f'mask{name}'].to(opt.device) for name in range(4)]
coordinate_map = [batch[f'coordinate_map{name}'].to(opt.device) for name in range(4)]
fg_INR_coordinates = coordinate_map[1:]
else:
composite_image = batch['composite_image'].to(opt.device)
real_image = batch['real_image'].to(opt.device)
mask = batch['mask'].to(opt.device)
fg_INR_coordinates = batch['fg_INR_coordinates'].to(opt.device)
fg_content_bg_appearance_construct, fit_lut3d, lut_transform_image = model(
composite_image, mask, fg_INR_coordinates)
if opt.INRDecode:
loss_fg_content_bg_appearance_construct = 0
"""
Our LRIP module requires three different resolution layers, thus here
`loss_fg_content_bg_appearance_construct` is calculated in multiple layers.
Besides, when leverage `hr_train`, i.e. use RSC strategy (See Section 3.4), the `real_image`
and `mask` are list type, corresponding different resolutions' crop.
"""
if opt.hr_train:
for n in range(3):
loss_fg_content_bg_appearance_construct += loss_fn['masked_mse'] \
(fg_content_bg_appearance_construct[n], real_image[3 - n], mask[3 - n])
loss_fg_content_bg_appearance_construct /= 3
loss_lut_transform_image = loss_fn['masked_mse'](lut_transform_image, real_image[1], mask[1])
else:
for n in range(3):
loss_fg_content_bg_appearance_construct += loss_fn['MaskWeightedMSE'] \
(fg_content_bg_appearance_construct[n],
torchvision.transforms.Resize(opt.INR_input_size // 2 ** (3 - n - 1))(real_image),
torchvision.transforms.Resize(opt.INR_input_size // 2 ** (3 - n - 1))(mask))
loss_fg_content_bg_appearance_construct /= 3
loss_lut_transform_image = loss_fn['masked_mse'](lut_transform_image, real_image, mask)
loss_lut_regularize = loss_fn['regularize_LUT'](fit_lut3d)
else:
loss_fg_content_bg_appearance_construct = 0
loss_lut_transform_image = loss_fn['masked_mse'](lut_transform_image, real_image, mask)
loss_lut_regularize = 0
loss = loss_fg_content_bg_appearance_construct + loss_lut_transform_image + loss_lut_regularize
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
step_time_log.update(time.time() - time_ckp)
loss_fg_content_bg_appearance_construct_log.update(0 if isinstance(loss_fg_content_bg_appearance_construct,
int) else loss_fg_content_bg_appearance_construct.item())
loss_lut_transform_image_log.update(
0 if isinstance(loss_lut_transform_image, int) else loss_lut_transform_image.item())
loss_lut_regularize_log.update(0 if isinstance(loss_lut_regularize, int) else loss_lut_regularize.item())
loss_log.update(loss.item())
if current_step % opt.print_freq == 0:
remain_secs = (total_step - current_step) * step_time_log.avg
remain_time = datetime.timedelta(seconds=round(remain_secs))
finish_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time() + remain_secs))
log_msg = f'Epoch: [{epoch}/{opt.epochs}]\t' \
f'Step: [{step}/{len(train_loader)}]\t' \
f'StepTime {step_time_log.val:.3f} ({step_time_log.avg:.3f})\t' \
f'lr {optimizer.param_groups[0]["lr"]}\t' \
f'Loss {loss_log.val:.4f} ({loss_log.avg:.4f})\t' \
f'Loss_fg_bg_cons {loss_fg_content_bg_appearance_construct_log.val:.4f} ({loss_fg_content_bg_appearance_construct_log.avg:.4f})\t' \
f'Loss_lut_trans {loss_lut_transform_image_log.val:.4f} ({loss_lut_transform_image_log.avg:.4f})\t' \
f'Loss_lut_reg {loss_lut_regularize_log.val:.4f} ({loss_lut_regularize_log.avg:.4f})\t' \
f'Remaining Time {remain_time} ({finish_time})'
logger.info(log_msg)
if opt.wandb:
import wandb
wandb.log(
{'Train/Epoch': epoch, 'Train/lr': optimizer.param_groups[0]['lr'], 'Train/Step': current_step,
'Train/Loss': loss_log.val,
'Train/Loss_fg_bg_cons': loss_fg_content_bg_appearance_construct_log.val,
'Train/Loss_lut_trans': loss_lut_transform_image_log.val,
'Train/Loss_lut_reg': loss_lut_regularize_log.val,
})
time_ckp = time.time()
state = {'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'last_epoch': epoch,
'scheduler': scheduler.state_dict()}
"""
As the validation of original resolution Harmonization will have no consistent resolution among images
(so fail to form a batch) and also may lead to out-of-memory problem when combined with training phase,
we here only save the model when `opt.isFullRes` is True, leaving the evaluation in `inference.py`.
"""
if opt.isFullRes and opt.hr_train:
if epoch % 5 == 0:
torch.save(state, os.path.join(opt.save_path, f"epoch{epoch}.pth"))
else:
torch.save(state, os.path.join(opt.save_path, "last.pth"))
else:
val(val_loader, model, logger, opt, state)
def val(val_loader, model, logger, opt, state):
global best_psnr
current_process = 10
model.eval()
metric_log = {
'HAdobe5k': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'HCOCO': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'Hday2night': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'HFlickr': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'All': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
}
lut_metric_log = {
'HAdobe5k': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'HCOCO': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'Hday2night': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'HFlickr': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'All': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
}
for step, batch in enumerate(val_loader):
composite_image = batch['composite_image'].to(opt.device)
real_image = batch['real_image'].to(opt.device)
mask = batch['mask'].to(opt.device)
category = batch['category']
fg_INR_coordinates = batch['fg_INR_coordinates'].to(opt.device)
bg_INR_coordinates = batch['bg_INR_coordinates'].to(opt.device)
fg_transfer_INR_RGB = batch['fg_transfer_INR_RGB'].to(opt.device)
with torch.no_grad():
fg_content_bg_appearance_construct, _, lut_transform_image = model(
composite_image,
mask,
fg_INR_coordinates,
bg_INR_coordinates)
if opt.INRDecode:
pred_fg_image = fg_content_bg_appearance_construct[-1]
else:
pred_fg_image = None
fg_transfer_INR_RGB = misc.lin2img(fg_transfer_INR_RGB,
val_loader.dataset.INR_dataset.size) if fg_transfer_INR_RGB is not None else None
"For INR"
mask_INR = torchvision.transforms.Resize(opt.INR_input_size)(mask)
if not opt.INRDecode:
pred_harmonized_image = None
else:
pred_harmonized_image = pred_fg_image * (mask > 100 / 255.) + real_image * (~(mask > 100 / 255.))
lut_transform_image = lut_transform_image * (mask > 100 / 255.) + real_image * (~(mask > 100 / 255.))
"Save the output images. For every 10 epochs, save more results, otherwise, save little. Thus save storage."
if state['last_epoch'] % 10 == 0:
misc.visualize(real_image, composite_image, mask, pred_fg_image,
pred_harmonized_image, lut_transform_image, opt, state['last_epoch'], show=False,
wandb=opt.wandb, isAll=True, step=step)
elif step == 0:
misc.visualize(real_image, composite_image, mask, pred_fg_image,
pred_harmonized_image, lut_transform_image, opt, state['last_epoch'], show=False,
wandb=opt.wandb, step=step)
if opt.INRDecode:
mse, fmse, psnr, ssim = metrics.calc_metrics(misc.normalize(pred_harmonized_image, opt, 'inv'),
misc.normalize(fg_transfer_INR_RGB, opt, 'inv'), mask_INR)
lut_mse, lut_fmse, lut_psnr, lut_ssim = metrics.calc_metrics(misc.normalize(lut_transform_image, opt, 'inv'),
misc.normalize(real_image, opt, 'inv'), mask)
for idx in range(len(category)):
if opt.INRDecode:
metric_log[category[idx]]['Samples'] += 1
metric_log[category[idx]]['MSE'] += mse[idx]
metric_log[category[idx]]['fMSE'] += fmse[idx]
metric_log[category[idx]]['PSNR'] += psnr[idx]
metric_log[category[idx]]['SSIM'] += ssim[idx]
metric_log['All']['Samples'] += 1
metric_log['All']['MSE'] += mse[idx]
metric_log['All']['fMSE'] += fmse[idx]
metric_log['All']['PSNR'] += psnr[idx]
metric_log['All']['SSIM'] += ssim[idx]
lut_metric_log[category[idx]]['Samples'] += 1
lut_metric_log[category[idx]]['MSE'] += lut_mse[idx]
lut_metric_log[category[idx]]['fMSE'] += lut_fmse[idx]
lut_metric_log[category[idx]]['PSNR'] += lut_psnr[idx]
lut_metric_log[category[idx]]['SSIM'] += lut_ssim[idx]
lut_metric_log['All']['Samples'] += 1
lut_metric_log['All']['MSE'] += lut_mse[idx]
lut_metric_log['All']['fMSE'] += lut_fmse[idx]
lut_metric_log['All']['PSNR'] += lut_psnr[idx]
lut_metric_log['All']['SSIM'] += lut_ssim[idx]
if (step + 1) / len(val_loader) * 100 >= current_process:
logger.info(f'Processing: {current_process}')
current_process += 10
logger.info('=========================')
for key in metric_log.keys():
if opt.INRDecode:
msg = f"{key}-'MSE': {metric_log[key]['MSE'] / metric_log[key]['Samples']:.2f}\n" \
f"{key}-'fMSE': {metric_log[key]['fMSE'] / metric_log[key]['Samples']:.2f}\n" \
f"{key}-'PSNR': {metric_log[key]['PSNR'] / metric_log[key]['Samples']:.2f}\n" \
f"{key}-'SSIM': {metric_log[key]['SSIM'] / metric_log[key]['Samples']:.4f}\n" \
f"{key}-'LUT_MSE': {lut_metric_log[key]['MSE'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_fMSE': {lut_metric_log[key]['fMSE'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_PSNR': {lut_metric_log[key]['PSNR'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_SSIM': {lut_metric_log[key]['SSIM'] / lut_metric_log[key]['Samples']:.4f}\n"
else:
msg = f"{key}-'LUT_MSE': {lut_metric_log[key]['MSE'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_fMSE': {lut_metric_log[key]['fMSE'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_PSNR': {lut_metric_log[key]['PSNR'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_SSIM': {lut_metric_log[key]['SSIM'] / lut_metric_log[key]['Samples']:.4f}\n"
logger.info(msg)
if opt.wandb:
import wandb
if opt.INRDecode:
wandb.log(
{f'Val/{key}/Epoch': state['last_epoch'],
f'Val/{key}/MSE': metric_log[key]['MSE'] / metric_log[key]['Samples'],
f'Val/{key}/fMSE': metric_log[key]['fMSE'] / metric_log[key]['Samples'],
f'Val/{key}/PSNR': metric_log[key]['PSNR'] / metric_log[key]['Samples'],
f'Val/{key}/SSIM': metric_log[key]['SSIM'] / metric_log[key]['Samples'],
f'Val/{key}/LUT_MSE': lut_metric_log[key]['MSE'] / lut_metric_log[key]['Samples'],
f'Val/{key}/LUT_fMSE': lut_metric_log[key]['fMSE'] / lut_metric_log[key]['Samples'],
f'Val/{key}/LUT_PSNR': lut_metric_log[key]['PSNR'] / lut_metric_log[key]['Samples'],
f'Val/{key}/LUT_SSIM': lut_metric_log[key]['SSIM'] / lut_metric_log[key]['Samples']
})
else:
wandb.log(
{f'Val/{key}/Epoch': state['last_epoch'],
f'Val/{key}/LUT_MSE': lut_metric_log[key]['MSE'] / lut_metric_log[key]['Samples'],
f'Val/{key}/LUT_fMSE': lut_metric_log[key]['fMSE'] / lut_metric_log[key]['Samples'],
f'Val/{key}/LUT_PSNR': lut_metric_log[key]['PSNR'] / lut_metric_log[key]['Samples'],
f'Val/{key}/LUT_SSIM': lut_metric_log[key]['SSIM'] / lut_metric_log[key]['Samples']
})
logger.info('=========================')
if not opt.INRDecode:
if lut_metric_log['All']['PSNR'] / lut_metric_log['All']['Samples'] > best_psnr:
logger.info("Best Save!")
best_psnr = lut_metric_log['All']['PSNR'] / lut_metric_log['All']['Samples']
torch.save(state, os.path.join(opt.save_path, "best.pth"))
else:
logger.info("Last Save!")
torch.save(state, os.path.join(opt.save_path, "last.pth"))
else:
if metric_log['All']['PSNR'] / metric_log['All']['Samples'] > best_psnr:
logger.info("Best Save!")
best_psnr = metric_log['All']['PSNR'] / metric_log['All']['Samples']
torch.save(state, os.path.join(opt.save_path, "best.pth"))
else:
logger.info("Last Save!")
torch.save(state, os.path.join(opt.save_path, "last.pth"))