forked from WindVChen/INR-Harmonization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathefficient_inference_for_square_image.py
351 lines (272 loc) · 15.9 KB
/
efficient_inference_for_square_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import argparse
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from model.build_model import build_model
import torch
import cv2
import numpy as np
import torchvision
import os
import tqdm
import time
from utils.misc import prepare_cooridinate_input, customRandomCrop
from datasets.build_INR_dataset import Implicit2DGenerator
import albumentations
from albumentations import Resize
from torch.utils.data import DataLoader
from utils.misc import normalize
import math
global_state = [1] # For Gradio Stop Button.
class single_image_dataset(torch.utils.data.Dataset):
def __init__(self, opt, composite_image=None, mask=None):
super().__init__()
self.opt = opt
if composite_image is None:
composite_image = cv2.imread(opt.composite_image)
composite_image = cv2.cvtColor(composite_image, cv2.COLOR_BGR2RGB)
self.composite_image = composite_image
assert composite_image.shape[0] == composite_image.shape[1], "This faster script only supports square images."
assert composite_image.shape[
0] % 256 == 0, "This faster script only supports images with resolution multiples of 256."
assert opt.split_resolution % (composite_image.shape[
0] // 16) == 0, f"The image resolution is {composite_image.shape[0]}, " \
f"you should set {opt.split_resolution} to multiplies of {composite_image.shape[0] // 16}"
if mask is None:
mask = cv2.imread(opt.mask)
mask = mask[:, :, 0].astype(np.float32) / 255.
self.mask = mask
self.torch_transforms = transforms.Compose([transforms.ToTensor(),
transforms.Normalize([.5, .5, .5], [.5, .5, .5])])
self.INR_dataset = Implicit2DGenerator(opt, 'Val')
self.split_width_resolution = self.split_height_resolution = opt.split_resolution
self.num_w = math.ceil(composite_image.shape[1] / self.split_width_resolution)
self.num_h = math.ceil(composite_image.shape[0] / self.split_height_resolution)
self.split_start_point = []
"Split the image into several parts."
for i in range(self.num_h):
for j in range(self.num_w):
if i == composite_image.shape[0] // self.split_height_resolution:
if j == composite_image.shape[1] // self.split_width_resolution:
self.split_start_point.append((composite_image.shape[0] - self.split_height_resolution,
composite_image.shape[1] - self.split_width_resolution))
else:
self.split_start_point.append(
(composite_image.shape[0] - self.split_height_resolution, j * self.split_width_resolution))
else:
if j == composite_image.shape[1] // self.split_width_resolution:
self.split_start_point.append(
(i * self.split_height_resolution, composite_image.shape[1] - self.split_width_resolution))
else:
self.split_start_point.append(
(i * self.split_height_resolution, j * self.split_width_resolution))
assert len(self.split_start_point) == self.num_w * self.num_h
print(
f"The image will be split into {self.num_h} pieces in height, and {self.num_w} pieces in width. Totally {self.num_h * self.num_w} patches.")
print(f"The final resolution of each patch is {self.split_height_resolution} x {self.split_width_resolution}")
def __len__(self):
return self.num_w * self.num_h
def __getitem__(self, idx):
composite_image = self.composite_image
mask = self.mask
full_coord = prepare_cooridinate_input(mask).transpose(1, 2, 0)
tmp_transform = albumentations.Compose([Resize(self.opt.base_size, self.opt.base_size)],
additional_targets={'object_mask': 'image'})
transform_out = tmp_transform(image=self.composite_image, object_mask=self.mask)
compos_list = [self.torch_transforms(transform_out['image'])]
mask_list = [
torchvision.transforms.ToTensor()(transform_out['object_mask'][..., np.newaxis].astype(np.float32))]
coord_map_list = []
if composite_image.shape[0] != self.split_height_resolution:
c_h = self.split_start_point[idx][0] / (composite_image.shape[0] - self.split_height_resolution)
else:
c_h = 0
if composite_image.shape[1] != self.split_width_resolution:
c_w = self.split_start_point[idx][1] / (composite_image.shape[1] - self.split_width_resolution)
else:
c_w = 0
transform_out, c_h, c_w = customRandomCrop([composite_image, mask, full_coord],
self.split_height_resolution, self.split_width_resolution, c_h, c_w)
compos_list.append(self.torch_transforms(transform_out[0]))
mask_list.append(
torchvision.transforms.ToTensor()(transform_out[1][..., np.newaxis].astype(np.float32)))
coord_map_list.append(torchvision.transforms.ToTensor()(transform_out[2]))
coord_map_list.append(torchvision.transforms.ToTensor()(transform_out[2]))
for n in range(2):
tmp_comp = cv2.resize(composite_image, (
composite_image.shape[1] // 2 ** (n + 1), composite_image.shape[0] // 2 ** (n + 1)))
tmp_mask = cv2.resize(mask, (mask.shape[1] // 2 ** (n + 1), mask.shape[0] // 2 ** (n + 1)))
tmp_coord = prepare_cooridinate_input(tmp_mask).transpose(1, 2, 0)
transform_out, c_h, c_w = customRandomCrop([tmp_comp, tmp_mask, tmp_coord],
self.split_height_resolution // 2 ** (n + 1),
self.split_width_resolution // 2 ** (n + 1), c_h, c_w)
compos_list.append(self.torch_transforms(transform_out[0]))
mask_list.append(
torchvision.transforms.ToTensor()(transform_out[1][..., np.newaxis].astype(np.float32)))
coord_map_list.append(torchvision.transforms.ToTensor()(transform_out[2]))
out_comp = compos_list
out_mask = mask_list
out_coord = coord_map_list
fg_INR_coordinates, bg_INR_coordinates, fg_INR_RGB, fg_transfer_INR_RGB, bg_INR_RGB = self.INR_dataset.generator(
self.torch_transforms, transform_out[0], transform_out[0], mask)
return {
'composite_image': out_comp,
'mask': out_mask,
'coordinate_map': out_coord,
'composite_image0': out_comp[0],
'mask0': out_mask[0],
'coordinate_map0': out_coord[0],
'composite_image1': out_comp[1],
'mask1': out_mask[1],
'coordinate_map1': out_coord[1],
'composite_image2': out_comp[2],
'mask2': out_mask[2],
'coordinate_map2': out_coord[2],
'composite_image3': out_comp[3],
'mask3': out_mask[3],
'coordinate_map3': out_coord[3],
'fg_INR_coordinates': fg_INR_coordinates,
'bg_INR_coordinates': bg_INR_coordinates,
'fg_INR_RGB': fg_INR_RGB,
'fg_transfer_INR_RGB': fg_transfer_INR_RGB,
'bg_INR_RGB': bg_INR_RGB,
'start_point': self.split_start_point[idx],
'start_proportion': [self.split_start_point[idx][0] / (composite_image.shape[0]),
self.split_start_point[idx][1] / (composite_image.shape[1]),
(self.split_start_point[idx][0] + self.split_height_resolution) / (
composite_image.shape[0]),
(self.split_start_point[idx][1] + self.split_width_resolution) / (
composite_image.shape[1])],
}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--split_resolution', type=int, default=2048,
help='The resolution of the patch split.')
parser.add_argument('--composite_image', type=str, default=r'./demo/demo_2k_composite.jpg',
help='composite image path')
parser.add_argument('--mask', type=str, default=r'./demo/demo_2k_mask.jpg',
help='mask path')
parser.add_argument('--save_path', type=str, default=r'./demo/',
help='save path')
parser.add_argument('--workers', type=int, default=8,
metavar='N', help='Dataloader threads.')
parser.add_argument('--batch_size', type=int, default=1,
help='You can override model batch size by specify positive number.')
parser.add_argument('--device', type=str, default='cuda',
help="Whether use cuda, 'cuda' or 'cpu'.")
parser.add_argument('--base_size', type=int, default=256,
help='Base size. Resolution of the image input into the Encoder')
parser.add_argument('--input_size', type=int, default=256,
help='Input size. Resolution of the image that want to be generated by the Decoder')
parser.add_argument('--INR_input_size', type=int, default=256,
help='INR input size. Resolution of the image that want to be generated by the Decoder. '
'Should be the same as `input_size`')
parser.add_argument('--INR_MLP_dim', type=int, default=32,
help='Number of channels for INR linear layer.')
parser.add_argument('--LUT_dim', type=int, default=7,
help='Dim of the output LUT. Refer to https://ieeexplore.ieee.org/abstract/document/9206076')
parser.add_argument('--activation', type=str, default='leakyrelu_pe',
help='INR activation layer type: leakyrelu_pe, sine')
parser.add_argument('--pretrained', type=str,
default=r'.\pretrained_models\Resolution_RAW_iHarmony4.pth',
help='Pretrained weight path')
parser.add_argument('--param_factorize_dim', type=int,
default=10,
help='The intermediate dimensions of the factorization of the predicted MLP parameters. '
'Refer to https://arxiv.org/abs/2011.12026')
parser.add_argument('--embedding_type', type=str,
default="CIPS_embed",
help='Which embedding_type to use.')
parser.add_argument('--INRDecode', action="store_false",
help='Whether INR decoder. Set it to False if you want to test the baseline '
'(https://github.com/SamsungLabs/image_harmonization)')
parser.add_argument('--isMoreINRInput', action="store_false",
help='Whether to cat RGB and mask. See Section 3.4 in the paper.')
parser.add_argument('--hr_train', action="store_false",
help='Whether use hr_train. See section 3.4 in the paper.')
parser.add_argument('--isFullRes', action="store_true",
help='Whether for original resolution. See section 3.4 in the paper.')
opt = parser.parse_args()
assert opt.batch_size == 1, 'This faster script only supports batch size 1 for inference.'
return opt
@torch.no_grad()
def inference(model, opt, composite_image=None, mask=None):
model.eval()
"dataset here is actually consisted of several patches of a single image."
singledataset = single_image_dataset(opt, composite_image, mask)
single_data_loader = DataLoader(singledataset, opt.batch_size, shuffle=False, drop_last=False, pin_memory=True,
num_workers=opt.workers, persistent_workers=False if composite_image is not None else True)
"Init a pure black image with the same size as the input image."
init_img = np.zeros_like(singledataset.composite_image)
time_all = 0
for step, batch in tqdm.tqdm(enumerate(single_data_loader)):
composite_image = [batch[f'composite_image{name}'].to(opt.device) for name in range(4)]
mask = [batch[f'mask{name}'].to(opt.device) for name in range(4)]
coordinate_map = [batch[f'coordinate_map{name}'].to(opt.device) for name in range(4)]
start_points = batch['start_point']
start_proportion = batch['start_proportion']
if opt.batch_size == 1:
start_points = [torch.cat(start_points)]
start_proportion = [torch.cat(start_proportion)]
fg_INR_coordinates = coordinate_map[1:]
try:
if global_state[0] == 0:
print("Stop Harmonizing...!")
break
if step == 0: # This is for CUDA Kernel Warm-up, or the first inference step will be quite slow.
fg_content_bg_appearance_construct, _, lut_transform_image = model(
composite_image,
mask,
fg_INR_coordinates, start_proportion[0]
)
print("Ready for harmonization...")
if opt.device == "cuda":
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_max_memory_cached()
start_time = time.time()
torch.cuda.synchronize()
fg_content_bg_appearance_construct, _, lut_transform_image = model(
composite_image,
mask,
fg_INR_coordinates, start_proportion[0]
)
if opt.device == "cuda":
torch.cuda.synchronize()
end_time = time.time()
end_max_memory = torch.cuda.max_memory_allocated() // 1024 ** 2
end_memory = torch.cuda.memory_allocated() // 1024 ** 2
print(f'GPU max memory usage: {end_max_memory} MB')
print(f'GPU memory usage: {end_memory} MB')
time_all += (end_time - start_time)
print(f'progress: {step} / {len(single_data_loader)}')
except:
raise Exception(
f'The image resolution is large. Please reduce the `split_resolution` value. Your current set is {opt.split_resolution}')
"Assemble the every patch's harmonized result into the final whole image."
for id in range(len(fg_INR_coordinates[0])):
pred_fg_image = fg_content_bg_appearance_construct[-1][id]
pred_harmonized_image = pred_fg_image * (mask[1][id] > 100 / 255.) + composite_image[1][id] * (
~(mask[1][id] > 100 / 255.))
pred_harmonized_tmp = cv2.cvtColor(
normalize(pred_harmonized_image.unsqueeze(0), opt, 'inv')[0].permute(1, 2, 0).cpu().mul_(255.).clamp_(
0., 255.).numpy().astype(np.uint8), cv2.COLOR_RGB2BGR)
init_img[start_points[id][0]:start_points[id][0] + singledataset.split_height_resolution,
start_points[id][1]:start_points[id][1] + singledataset.split_width_resolution] = pred_harmonized_tmp
if opt.device == "cuda":
print(f'Inference time: {time_all}')
if opt.save_path is not None:
os.makedirs(opt.save_path, exist_ok=True)
cv2.imwrite(os.path.join(opt.save_path, "pred_harmonized_image.jpg"), init_img)
return init_img
def main_process(opt, composite_image=None, mask=None):
cudnn.benchmark = True
print("Preparing model...")
model = build_model(opt).to(opt.device)
load_dict = torch.load(opt.pretrained, map_location='cpu')['model']
model.load_state_dict(load_dict, strict=False)
return inference(model, opt, composite_image, mask)
if __name__ == '__main__':
opt = parse_args()
opt.transform_mean = [.5, .5, .5]
opt.transform_var = [.5, .5, .5]
main_process(opt)