forked from microsoft/DIF-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_chamfer_distance.py
50 lines (39 loc) · 1.3 KB
/
calculate_chamfer_distance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
'''Chamfer distance calculation.
'''
import torch
import numpy as np
from scipy.io import loadmat
import os
from pytorch3d.loss import chamfer_distance
import trimesh
def normalize_pts(pts):
# pts [N,3]
center = np.mean(pts,0)
pts -= center
dist = np.linalg.norm(pts,axis=1)
pts /= np.max(dist*2) # align in a sphere with diameter equal to 1
return pts
def compute_chamfer(recon_pts,gt_pts,num_pts=10000):
np.random.seed(0)
recon_pts = normalize_pts(recon_pts)
idx = np.random.choice(len(recon_pts),size=(num_pts),replace=True)
recon_pts = recon_pts[idx,:]
gt_pts = normalize_pts(gt_pts)
idx = np.random.choice(len(gt_pts),size=(num_pts),replace=True)
gt_pts = gt_pts[idx,:]
with torch.no_grad():
recon_pts = torch.from_numpy(recon_pts).float().cuda()[None,...]
gt_pts = torch.from_numpy(gt_pts).float().cuda()[None,...]
dist,_ = chamfer_distance(recon_pts,gt_pts,batch_reduction=None)
dist = dist.cpu().squeeze().numpy()
return dist
def compute_recon_error(recon_path,gt_path):
recon_mesh = trimesh.load(recon_path)
if isinstance(recon_mesh,trimesh.Scene):
recon_mesh = recon_mesh.dump().sum()
recon_pts = recon_mesh.vertices
gt_pts = loadmat(gt_path)['p']
gt_pts = gt_pts[:,:3]
return compute_chamfer(recon_pts,gt_pts)