-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathweakordersp.py
136 lines (113 loc) · 4.37 KB
/
weakordersp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# File: weakordersp.py
# Authors: Zack Fitzsimmons ([email protected]),
# Martin Lackner ([email protected])
import sys
import preflibtools.io as preflibio
import consones
def create_matrix(preference, cands, sp_type):
num_cands = len(cands)
pref_mat = []
for i in range(len(cands)):
pref_mat.append([0]*len(cands))
for i, a in enumerate(cands):
for j, b in enumerate(cands):
# Lower value denotes a preferred to b
if preference[a] < preference[b]:
pref_mat[i][j] = 0
else:
pref_mat[i][j] = 1
# Extensions found in Constructions 2 and 3
if sp_type == 1 or sp_type == 2:
# Candidate index for each candidate ranked at each position
positions = []
for i in range(len(cands)):
positions.append([])
for indx, c in enumerate(cands):
positions[preference[c]-1].append(indx)
for curr in range(len(positions)):
# More than two candidates are tied and these are
# not the most-preferred candidates
# or if testing for Black-SP and there is
# more than one most-preferred candidate
if (curr > 0 and len(positions[curr]) > 2) or \
(curr == 0 and len(positions[curr]) > 1 and sp_type == 2):
# Return matrix with no solution
rowA = [0]*num_cands
rowA[0] = 1
rowA[1] = 1
rowA[2] = 0
rowB = [0]*num_cands
rowB[0] = 1
rowB[1] = 0
rowB[2] = 1
rowC = [0]*num_cands
rowC[0] = 0
rowC[1] = 1
rowC[2] = 1
pref_mat.append(rowA)
pref_mat.append(rowB)
pref_mat.append(rowC)
return pref_mat
# Exactly two candidates tied and not the most-preferred candidates
elif (curr > 0 and len(positions[curr]) == 2):
rowA = [0]*num_cands
rowB = [0]*num_cands
rowC = [0]*num_cands
# Column for first candidate
rowA[positions[curr][0]] = 0
rowB[positions[curr][0]] = 1
rowC[positions[curr][0]] = 1
# Column for second candidate
rowA[positions[curr][1]] = 1
rowB[positions[curr][1]] = 1
rowC[positions[curr][1]] = 0
# Candidates preferred to both tied candidates set to 1.
# Other positions already set to 0.
#
# For each position up to curr
for x in range(curr):
# For each candidate ranked at position n
# (positions[][] contains candidate indices)
for cand_indx in positions[x]:
rowA[cand_indx] = 1
rowB[cand_indx] = 1
rowC[cand_indx] = 1
pref_mat.append(rowA)
pref_mat.append(rowB)
pref_mat.append(rowC)
return pref_mat
def testsp_file(filename, sp_type, verbose=False):
print("%s," % (filename), end="")
election_file = open(filename, 'r')
try:
cmap, rmaps, unused_rmapcounts, nvoters = \
preflibio.read_election_file(election_file)
except Exception:
print("0,0,FileError")
sys.exit(0)
print("%d,%d," % (len(cmap), nvoters), end="")
profile_mat = []
for pref in rmaps:
pref_mat = create_matrix(pref, cmap, sp_type)
for row in pref_mat:
profile_mat.append(row)
result = consones.solve_sat(profile_mat)
if result is not None:
print("True", end="")
else:
print("False", end="")
if verbose:
print()
# prints the axis
if result is not None:
print("Axis:", [cmap[i+1] for i in result])
if __name__ == "__main__":
if (len(sys.argv) != 3 or int(sys.argv[2]) not in [0, 1, 2]):
print("Usage: python3 tryalgo-sp.py election-file N")
print("N denotes type of SP (Possibly Single-Peaked (0), " +
"Single-Plateaued (1), or Black Single-Peaked (2).)")
sys.exit(0)
filename = str(sys.argv[1])
sp_type = int(sys.argv[2])
testsp_file(filename, sp_type, verbose=False)
print()