-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain_IN.py
436 lines (334 loc) · 14.7 KB
/
train_IN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import os
import scipy.io as sio
import sys
sys.path.append('/home/zilong/SSTN') # add the SSTN root path to environment path
import torch
import utils
import glob
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio
import time
import collections
import logging
import argparse
import torch
from torch.utils import data
from sklearn.decomposition import PCA
from sklearn import metrics, preprocessing
from utils import cal_results, predVisIN
import collections
from NetworksBlocks import SSNet_AEAE_IN, SSRN
parser = argparse.ArgumentParser("IN")
# parser.add_argument('--data', type=str, default='../data', help='location of the data corpus')
# parser.add_argument('--set', type=str, default='cifar10', help='location of the data corpus')
parser.add_argument('--batch_size', type=int, default=50, help='batch size')
parser.add_argument('--learning_rate', type=float, default=0.002, help='init learning rate')
# parser.add_argument('--learning_rate_min', type=float, default=0.001, help='min learning rate')
# parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
# parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay')
# parser.add_argument('--report_freq', type=float, default=50, help='report frequency')
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
parser.add_argument('--epochs', type=int, default=200, help='num of training epochs')
# parser.add_argument('--init_channels', type=int, default=16, help='num of init channels')
# parser.add_argument('--layers', type=int, default=8, help='total number of layers')
# parser.add_argument('--model_path', type=str, default='saved_models', help='path to save the model')
# parser.add_argument('--cutout', action='store_true', default=False, help='use cutout')
# parser.add_argument('--cutout_length', type=int, default=16, help='cutout length')
# parser.add_argument('--drop_path_prob', type=float, default=0.3, help='drop path probability')
parser.add_argument('--save', type=str, default='EXP', help='experiment name')
parser.add_argument('--sample', type=int, default=200, help='sample sizes for training')
parser.add_argument('--model', type=str, default='SSTN', help='select network to train')
parser.add_argument('--phi', type=str, default='AEAE', help='sequential order of network')
# parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping')
# parser.add_argument('--train_portion', type=float, default=0.5, help='portion of training data')
# parser.add_argument('--unrolled', action='store_true', default=False, help='use one-step unrolled validation loss')
# parser.add_argument('--arch_learning_rate', type=float, default=6e-4, help='learning rate for arch encoding')
# parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
args = parser.parse_args()
torch.cuda.set_device(args.gpu)
np.random.seed(2)
cudnn.benchmark = True
torch.manual_seed(2)
cudnn.enabled=True
torch.cuda.manual_seed(2)
args.save = 'IN-train-model-{}-arch-{}-{}-lr{}'.format(args.model, args.phi, time.strftime("%Y%m%d-%H%M%S"), args.learning_rate)
utils.create_exp_dir(args.save, scripts_to_save=glob.glob('train_IN.py'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
def indexToAssignment(index_, pad_length, Row, Col):
new_assign = {}
for counter, value in enumerate(index_):
assign_0 = value // Col + pad_length
assign_1 = value % Col + pad_length
new_assign[counter] = [assign_0, assign_1]
return new_assign
def assignmentToIndex(assign_0, assign_1, Row, Col):
new_index = assign_0 * Col + assign_1
return new_index
def selectNeighboringPatch(matrix, ex_len, pos_row, pos_col):
# print(matrix.shape)
selected_rows = matrix[:,range(pos_row-ex_len,pos_row+ex_len+1), :]
selected_patch = selected_rows[:, :, range(pos_col-ex_len, pos_col+ex_len+1)]
return selected_patch
def sampling(proptionVal, groundTruth): #divide dataset into train and test datasets
labels_loc = {}
train = {}
test = {}
m = max(groundTruth)
for i in range(m):
indices = [j for j, x in enumerate(groundTruth.ravel().tolist()) if x == i + 1]
np.random.shuffle(indices)
labels_loc[i] = indices
nb_val = int(proptionVal * len(indices))
train[i] = indices[:-nb_val]
test[i] = indices[-nb_val:]
whole_indices = []
train_indices = []
test_indices = []
for i in range(m):
whole_indices += labels_loc[i]
train_indices += train[i]
test_indices += test[i]
np.random.shuffle(train_indices)
np.random.shuffle(test_indices)
return whole_indices, train_indices, test_indices
sample_200 = [2, 27, 19, 4, 9, 14, 2, 10, 3, 24, 41, 14, 4, 18, 7, 2]
rsample_200 = [1, 28, 16, 5, 9, 14, 1, 9, 1, 19, 47, 12, 4, 24, 8, 2]
def rsampling(groundTruth, sample_num = sample_200, rsample_num = rsample_200): #divide dataset into train and test datasets
labels_loc = {}
labeled = {}
train2 = {}
val = {}
test = {}
m = np.max(groundTruth)
for i in range(m):
indices = [j for j, x in enumerate(groundTruth.ravel().tolist()) if x == i + 1]
np.random.shuffle(indices)
labels_loc[i] = indices
labeled[i] = indices[:sample_num[i]]
train2[i] = indices[sample_num[i]:sample_num[i]+rsample_num[i]]
val[i] = indices[-(sample_num[i]+rsample_num[i]):]
test[i] = indices[sample_num[i]+rsample_num[i]:-(sample_num[i]+rsample_num[i])]
whole_indices = []
labeled_indices = []
train2_indices = []
val_indices = []
test_indices = []
for i in range(m):
whole_indices += labels_loc[i]
labeled_indices += labeled[i]
train2_indices += train2[i]
val_indices += val[i]
test_indices += test[i]
np.random.shuffle(labeled_indices)
np.random.shuffle(train2_indices)
np.random.shuffle(val_indices)
np.random.shuffle(test_indices)
return whole_indices, labeled_indices, train2_indices, val_indices, test_indices
def zeroPadding_3D(old_matrix, pad_length, pad_depth = 0):
new_matrix = np.lib.pad(old_matrix, ((pad_depth, pad_depth), (pad_length, pad_length), (pad_length, pad_length)), 'constant', constant_values=0)
return new_matrix
IN_PATH = './datasets'
mat_data = sio.loadmat(IN_PATH + '/IN/Indian_pines_corrected.mat')
data_IN = mat_data['indian_pines_corrected']
mat_gt = sio.loadmat(IN_PATH + '/IN/Indian_pines_gt.mat')
gt_IN = mat_gt['indian_pines_gt']
#print (data_IN.shape)
# Input dataset configuration to generate 103x7x7 HSI samples
new_gt_IN = gt_IN
#batch_size = 16
nb_classes = 9
#img_rows, img_cols = 7, 7 # 9, 9
INPUT_DIMENSION_CONV = 200
INPUT_DIMENSION = 200
# 20%:10%:70% data for training, validation and testing
TOTAL_SIZE = 10249
# VAL_SIZE = 4281
TRAIN_SIZE = 200 #300
DEV_SIZE = 200
VAL_SIZE = 400
TEST_SIZE = TOTAL_SIZE - TRAIN_SIZE - DEV_SIZE - VAL_SIZE
# VALIDATION_SPLIT = 0.9 # 20% for trainnig and 80% for validation and testing
img_channels = 200
PATCH_LENGTH = 4 #Patch_size 9*9
MAX = data_IN.max()
data_IN = np.transpose(data_IN, (2,0,1))
data_IN = data_IN - np.mean(data_IN, axis=(1,2), keepdims=True)
data_IN = data_IN / MAX
data = data_IN.reshape(np.prod(data_IN.shape[:1]),np.prod(data_IN.shape[1:]))
gt = new_gt_IN.reshape(np.prod(new_gt_IN.shape[:2]),)
whole_data = data.reshape(data_IN.shape[0], data_IN.shape[1],data_IN.shape[2])
#whole_data = whole_data - np.mean(whole_data, axis=(1,2), keepdims=True)
padded_data = zeroPadding_3D(whole_data, PATCH_LENGTH)
#CATEGORY = 9
train_data = np.zeros((TRAIN_SIZE, INPUT_DIMENSION_CONV, 2*PATCH_LENGTH + 1, 2*PATCH_LENGTH + 1))
test_data = np.zeros((TEST_SIZE, INPUT_DIMENSION_CONV, 2*PATCH_LENGTH + 1, 2*PATCH_LENGTH + 1))
all_data = np.zeros((TOTAL_SIZE, INPUT_DIMENSION_CONV, 2*PATCH_LENGTH + 1, 2*PATCH_LENGTH + 1))
all_indices, train_indices, dev_indices, val_indices, test_indices = rsampling(gt)
y_train = gt[train_indices] - 1
y_test = gt[test_indices] - 1
y_all = gt[all_indices] - 1
train_assign = indexToAssignment(train_indices, PATCH_LENGTH, whole_data.shape[1], whole_data.shape[2])
for i in range(len(train_assign)):
train_data[i] = selectNeighboringPatch(padded_data, PATCH_LENGTH, train_assign[i][0], train_assign[i][1])
test_assign = indexToAssignment(test_indices, PATCH_LENGTH, whole_data.shape[1], whole_data.shape[2])
for i in range(len(test_assign)):
test_data[i] = selectNeighboringPatch(padded_data, PATCH_LENGTH, test_assign[i][0], test_assign[i][1])
all_assign = indexToAssignment(all_indices, PATCH_LENGTH, whole_data.shape[1], whole_data.shape[2])
for i in range(len(all_assign)):
all_data[i] = selectNeighboringPatch(padded_data, PATCH_LENGTH, all_assign[i][0], all_assign[i][1])
import torch
from torch.utils import data
class HSIDataset(data.Dataset):
def __init__(self, list_IDs, samples, labels):
self.list_IDs = list_IDs
self.samples = samples
self.labels = labels
def __len__(self):
return len(self.list_IDs)
def __getitem__(self, index):
# Select sample
ID = self.list_IDs[index]
# Load data and get label
X = self.samples[ID]
y = self.labels[ID]
return X, y
# CUDA for PyTorch
use_cuda = torch.cuda.is_available()
#device = torch.device("cuda:0" if use_cuda else "cpu")
device = torch.device('cuda', args.gpu)
#torch.cudnn.benchmark = True
# Parameters
params = {'batch_size': args.batch_size,
'shuffle': True,
'num_workers': 8}
max_epochs = 100
# Generators
training_set = HSIDataset(range(len(train_indices)), train_data, y_train)
training_generator = data.DataLoader(training_set, **params)
validation_set = HSIDataset(range(len(test_indices)), test_data, y_test)
validation_generator = data.DataLoader(validation_set, **params)
all_set = HSIDataset(range(len(all_indices)), all_data, y_all)
all_generator = data.DataLoader(all_set, **params)
trainloader = torch.utils.data.DataLoader(training_set, batch_size=50, shuffle=True, num_workers=8)
validationloader = torch.utils.data.DataLoader(validation_set, batch_size=50, shuffle=False, num_workers=8)
allloader = torch.utils.data.DataLoader(all_set, batch_size=50, shuffle=False, num_workers=8)
if args.model == 'SSTN':
net = SSNet_AEAE_IN()
elif args.model == 'SSRN':
net = SSRN(num_classes=16, k=97)
else:
logging.error("So such model in our zoo!")
net.to(device)
import torch
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
#optimizer = optim.RMSprop(net.parameters())
optimizer = optim.Adam(net.parameters(), lr=args.learning_rate)
best_pred = 0
#SAVE_PATH3 = './saved_models/ssnet_best3_up_seed' + str(args.seed) + '.pth'
SAVE_PATH3 = args.save + '/' + str(args.model) + '_sample' + str(args.sample) + '.pth'
#torch.save(net.state_dict(), SAVE_PATH)
for epoch in range(args.epochs): # loop over the dataset multiple times
running_loss = 0.0
#iters = len(trainloader)
net = net.train()
for i, data in enumerate(trainloader, 0):
# get the inputs
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs.float())
loss = criterion(outputs, labels.long())
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 4 == 3: # print every 2000 mini-batches
logging.info('[%d, %5d] loss: %.4f' %
(epoch + 1, i + 1, running_loss / 4))
running_loss = 0.0
#schedular.step()
correct = 0
total = 0
net = net.eval()
counter = 0
with torch.no_grad():
for data in validationloader:
# if counter <= 10:
# counter += 1
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images.float())
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels.long()).sum().item()
new_pred = correct / total
logging.info('Accuracy of the network on the validation set: %.5f %%' % (
100 * new_pred))
if new_pred > best_pred:
logging.info('new_pred %f', new_pred)
logging.info('best_pred %f', best_pred)
torch.save(net.state_dict(), SAVE_PATH3)
best_pred=new_pred
logging.info('Finished Training')
# Validation Stage
if args.model == 'SSTN':
trained_net = SSNet_AEAE_IN()
elif args.model == 'SSRN':
trained_net = SSRN(num_classes=16, k=97)
else:
logging.error("No such model in our zoo!")
trained_net.load_state_dict(torch.load(SAVE_PATH3))
trained_net.eval()
trained_net = trained_net.cuda()
label_val = []
pred_val = []
with torch.no_grad():
for data in validationloader:
images, labels = data
#label_val = torch.stack([label_val.type_as(labels), labels])
label_val.append(labels)
images, labels = images.to(device), labels.to(device)
outputs = trained_net(images.float())
_, predicted = torch.max(outputs.data, 1)
#pred_val = torch.stack([pred_val.type_as(predicted), predicted])
pred_val.append(predicted)
label_val_cpu = [x.cpu() for x in label_val]
pred_val_cpu = [x.cpu() for x in pred_val]
label_cat = np.concatenate(label_val_cpu)
pred_cat = np.concatenate(pred_val_cpu)
matrix = metrics.confusion_matrix(label_cat, pred_cat)
OA, AA_mean, Kappa, AA = cal_results(matrix)
logging.info('OA, AA_Mean, Kappa: %f, %f, %f, ', OA, AA_mean, Kappa)
logging.info(str(("AA for each class: ", AA)))
# # generate classification maps
# all_pred = []
# with torch.no_grad():
# for data in allloader:
# images, _ = data
# images, _ = images.to(device), labels.to(device)
# outputs = trained_net(images.float())
# _, predicted = torch.max(outputs.data, 1)
# all_pred.append(predicted)
# all_pred = torch.cat(all_pred)
# all_pred = all_pred.cpu().numpy() + 1
# y_pred = predVisIN(all_indices, all_pred, 145, 145)
# #plt.plot(x, y)
# plt.imshow(y_pred)
# plt.axis('off')
# fig_path = './Cmaps/' + str(args.model) + '.png'
# plt.savefig(fig_path, bbox_inches=0)
# #plt.savefig(fig_path, bbox_inches='tight')