-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbbox_regressor.py
100 lines (78 loc) · 2.51 KB
/
bbox_regressor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import numpy as np
from numpy import dot, diag, sqrt
from numpy.linalg import eig, inv, cholesky, lstsq
from proc import overlap_ratio
from utils import Data
def train_bbox_regressor(X, bbox, gt):
config = Data()
config.min_overlap = 0.6
config.delta = 1000
config.method = 'ridge_reg_chol'
# get training groundtruth
Y, O = get_examples(bbox, gt)
X = X[O>config.min_overlap]
Y = Y[O>config.min_overlap]
# add bias
X = np.c_[X, np.ones([X.shape[0], 1])]
# center and decorrelate targets
mu = np.mean(Y, axis=0).reshape(1, -1)
Y = Y - mu
S = dot(Y.T, Y) / Y.shape[0]
D, V = eig(S)
T = dot(dot(V, diag(1.0/sqrt(D+0.001))), V.T)
T_inv = dot(dot(V, diag(sqrt(D+0.001))), V.T)
Y = dot(Y, T)
model = Data()
model.mu = mu
model.T = T
model.T_inv = T_inv
model.Beta = np.c_[solve(X, Y[:, 0], config.delta, config.method),
solve(X, Y[:, 1], config.delta, config.method),
solve(X, Y[:, 2], config.delta, config.method),
solve(X, Y[:, 3], config.delta, config.method)]
# pack
bbox_reg = Data()
bbox_reg.model = model
bbox_reg.config = config
return bbox_reg
def predict_bbox_regressor(model, feat, ex_boxes):
if ex_boxes.size == 0:
return np.array([]).reshape(-1, 4)
# predict regression targets
Y = np.dot(feat, model.Beta[:-1]) + model.Beta[-1]
# invert transformation
Y = dot(Y, model.T_inv)
# read out prediction
dst_size = Y[:, 2:]
dst_ctr = Y[:, 2:]
src_size = ex_boxes[:, 2:]
src_ctr = ex_boxes[:, :2] + 0.5 * src_size
pred_size = np.exp(dst_size) * src_size
pred_ctr = dst_ctr * src_ctr + src_ctr
pred = np.c_[pred_ctr - 0.5 * pred_size, pred_size]
return pred
def get_examples(bbox, gt):
# compute overlap ratio
O = overlap_ratio(bbox, gt)
# compute answer
src_size = bbox[:, 2:]
src_ctr = bbox[:, :2] + 0.5 * src_size
gt_size = gt[2:]
gt_ctr = gt[:2] + 0.5 * gt_size
dst_size = np.log(gt_size / src_size)
dst_ctr = (gt_ctr - src_ctr) * 1.0 / src_ctr
Y = np.c_[dst_ctr, dst_size]
return Y, O
def solve(A, y, delta, method):
if method == 'ridge_reg_chol':
R = cholesky(dot(A.T, A) + delta*np.identity(A.shape[1]))
z = lstsq(R.T, dot(A.T, y))[0]
x = lstsq(R, z)[0]
elif method == 'ridge_reg_inv':
x = dot(dot(inv(dot(A.T, A) + delta*np.identity(A.shape[1])), A.T), y)
elif method == 'ls_mldivide':
if delta > 0:
print('ignoring lambda; no regularization used')
x = lstsq(A, y)[0]
loss = 0.5 * (dot(A, x) - y) **2
return x.reshape(-1, 1)