-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathvideo_demo.py
executable file
·106 lines (93 loc) · 3.53 KB
/
video_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import cv2
import numpy as np
import random
from moviepy.editor import *
import mxnet as mx
from detect.detector import Detector
class video_generator:
def __init__(self,video_path,fps,output_path='./result.mp4'):
self.clip = VideoFileClip(video_path)
self.output_path = output_path
self.fps = fps
self.record = None
def set_record(self,record):
self.record = record
def commit(self):
def draw(img,bboxes):
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
for b in bboxes:
xmin,ymin,xmax,ymax = b[:]
cv2.rectangle(img, (xmin,ymin), (xmax,ymax),(255,255,0) ,thickness=2)
return img
def make_frame(t):
idx = t*(self.clip.fps/self.fps)
frm = self.clip.get_frame(t)
height ,width = frm.shape[:2]
for t,bboxes in self.record:
if t==idx:
frm = draw(frm,bboxes)
else:
pass
return frm
new_clip = VideoClip(make_frame, duration=self.clip.duration) # 3-second clip
new_clip.fps=self.clip.fps
new_clip.to_videofile(self.output_path)
def get_mxnet_detector(net, prefix, epoch, data_shape, mean_pixels, ctx,batch_size = 1):
detector = Detector(net, prefix, epoch, data_shape, mean_pixels, ctx=ctx,batch_size = 1)
return detector
def img_preprocessing(img,data_shape):
img = cv2.resize(img,(data_shape,data_shape))
img = np.swapaxes(img, 0, 2)
img = np.swapaxes(img, 1, 2)
# img = img[np.newaxis, :]
return [mx.nd.array([img])]
def get_bboxes(img,dets,thresh = 0.5 ):
height = img.shape[0]
width = img.shape[1]
colors = dict()
bboxes = []
for i in range(dets.shape[0]):
cls_id = int(dets[i, 0])
if cls_id >= 0:
score = dets[i, 1]
if score > thresh:
xmin = int(dets[i, 2] * width)
ymin = int(dets[i, 3] * height)
xmax = int(dets[i, 4] * width)
ymax = int(dets[i, 5] * height)
bboxes.append([xmin,ymin,xmax,ymax])
# cv2.rectangle(img, (xmin,ymin), (xmax,ymax),(255,255,0) ,thickness=2)
# cv2.imwrite('./img.jpg',img)
return bboxes
def main():
#args
net = None
# prefix = os.path.join(os.getcwd(), 'model', 'yolo2_darknet19_416')
# epoch = 240
prefix = os.path.join(os.getcwd(), 'model', 'resnet50_yolov2_resnet50_416')
epoch = 158
data_shape = 416
mean_pixels = (123,117,104)
ctx = mx.gpu(0)
detector = get_mxnet_detector(net, prefix, epoch, data_shape, mean_pixels, ctx=ctx,batch_size = 1)
video_path = '/home/share/test_video/a1004s101_ch0.mp4'
clip = VideoFileClip(video_path)
record = []
frames = clip.iter_frames(fps=clip.fps ,with_times = True)
for t,frm in frames:
data = img_preprocessing(frm,data_shape)
det_batch = mx.io.DataBatch(data,[])
detector.mod.forward(det_batch, is_train=False)
detections = detector.mod.get_outputs()[0].asnumpy()
result = []
for i in range(detections.shape[0]):
det = detections[i, :, :]
res = det[np.where(det[:, 0] >= 0)[0]]
result.append(res)
bboxes = get_bboxes(frm,res)
record.append([t,bboxes])
vg = video_generator(video_path,fps = clip.fps)
vg.set_record(record)
vg.commit()
main()