forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfuse_linear.cpp
100 lines (89 loc) · 3.65 KB
/
fuse_linear.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#include <torch/csrc/jit/passes/fuse_linear.h>
#include <torch/csrc/jit/passes/quantization/helper.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
namespace torch {
namespace jit {
void FuseLinear(std::shared_ptr<Graph>& graph) {
std::string addmm_pattern = R"IR(
graph(%input, %weight_t, %bias, %beta, %alpha):
%res = aten::addmm(%bias, %input, %weight_t, %beta, %alpha)
return (%res))IR";
std::string fused_linear_addmm = R"IR(
graph(%input, %weight_t, %bias, %beta, %alpha):
%weight = aten::t(%weight_t)
%res = aten::linear(%input, %weight, %bias)
return (%res))IR";
auto beta_is_one = [](const Match& match,
const std::unordered_map<std::string, Value*>& vmap) {
return is_int_constant(match, vmap, "beta", 1);
};
// check %weight_t is produced by `aten::t` to make sure
// we can transform the pattern to `aten::linear`
auto weight_transposed =
[](const Match& match,
const std::unordered_map<std::string, Value*>& vmap) {
const auto& match_vmap = match.values_map;
auto v = match_vmap.at(vmap.at("weight_t"));
return v->node()->kind() == Symbol::aten("t");
};
// replace addmm pattern to linear
SubgraphRewriter addmm_to_linear;
std::vector<std::pair<std::string, std::string>> value_mappings(
{{"weight", "res"}, {"res", "res"}});
addmm_to_linear.RegisterRewritePattern(
addmm_pattern, fused_linear_addmm, value_mappings);
addmm_to_linear.runOnGraph(
graph, {aten_add_alpha_is_one, beta_is_one, weight_transposed});
std::string matmul_add_pattern = R"IR(
graph(%input, %weight_t, %bias, %alpha):
%output = aten::matmul(%input, %weight_t)
%res = aten::add_(%output, %bias, %alpha)
return (%res))IR";
std::string fused_linear_matmul = R"IR(
graph(%input, %weight_t, %bias, %alpha):
%weight = aten::t(%weight_t)
%res = aten::linear(%input, %weight, %bias)
return (%res))IR";
value_mappings = {{"weight", "output"}, {"res", "output"}};
// replace matmul + add pattern to linear
SubgraphRewriter matmuladd_to_linear;
matmuladd_to_linear.RegisterRewritePattern(
matmul_add_pattern, fused_linear_matmul, value_mappings);
matmuladd_to_linear.runOnGraph(
graph, {aten_add_alpha_is_one, weight_transposed});
std::string matmul_pattern = R"IR(
graph(%input, %weight_t):
%output = aten::matmul(%input, %weight_t)
return (%output))IR";
std::string fused_linear_bias_none = R"IR(
graph(%input, %weight_t):
%weight = aten::t(%weight_t)
%bias: Tensor? = prim::Constant()
%res = aten::linear(%input, %weight, %bias)
return (%res))IR";
// replace matmul with bias=None pattern to linear
SubgraphRewriter matmul_to_linear;
matmul_to_linear.RegisterRewritePattern(
matmul_pattern, fused_linear_bias_none, value_mappings);
matmul_to_linear.runOnGraph(graph, weight_transposed);
// clean up extra transpose for the weight of aten::linear
std::string linear_weight_extra_transpose = R"IR(
graph(%input, %weight, %bias):
%weight_t1 = aten::t(%weight)
%weight_t2 = aten::t(%weight_t1)
%res = aten::linear(%input, %weight_t2, %bias)
return (%res))IR";
std::string linear_weight_no_transpose = R"IR(
graph(%input, %weight, %bias):
%res = aten::linear(%input, %weight, %bias)
return (%res))IR";
value_mappings = {{"res", "res"}};
SubgraphRewriter cleanup;
cleanup.RegisterRewritePattern(
linear_weight_extra_transpose,
linear_weight_no_transpose,
value_mappings);
cleanup.runOnGraph(graph);
}
} // namespace jit
} // namespace torch