forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimport.cpp
727 lines (664 loc) · 25.5 KB
/
import.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
#include <torch/csrc/jit/mobile/import.h>
#include <ATen/core/ivalue.h>
#include <c10/util/ScopeExit.h>
#include <c10/util/irange.h>
#include <caffe2/serialize/inline_container.h>
#include <torch/csrc/jit/api/compilation_unit.h>
#include <torch/csrc/jit/mobile/interpreter.h>
#include <torch/csrc/jit/mobile/observer.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/csrc/jit/serialization/import_export_constants.h>
#include <torch/csrc/jit/serialization/import_read.h>
#include <torch/custom_class.h>
#include <exception>
#include <fstream>
#include <string>
#include <vector>
// The import process to serialize the bytecode package.
// An example for bytecode.pkl of a small mobile_module looks like:
// (4, # model version number (caffe2::serialize::kProducedBytecodeVersion)
// # first method
// (
// # function name
// '__torch__.m.forward',
// # code
// (('instructions',
// (('STOREN', 1, 2),
// ('DROPR', 1, 0),
// ('MOVE', 2, 0),
// ('OP', 0, 0),
// ('RET', 0, 0))),
// ('operators', (('aten::Int', 'Tensor'),)),
// ('constants', ()),
// ('types', ()),
// ('register_size', 2)),
// # schema -- optional (forward-compatible addition to version 4)
// (('arguments',
// ((('name', 'x'), ('type', 'Tensor'), ('default_value', 13)),
// ...)), # more args follow here
// ('returns',
// ((('name', ''), ('type', 'Tensor'), ('default_value', None)),
// ...)), # more return values follow here
// )),
// # more methods follow here
// ...)
// In addition, the module debugging information can be saved
// in mobile_debug_handles.pkl. An example for it looks like:
// (4,
// ('__torch__.m.forward',
// (('module_debug_handles', 10))))
// Here 10 is the debug handle.
// We also store separately and optionally callstack_debug_map.
// This serializes inlined callstack (InlinedCallStack data structure)
// corresponding to the debug handles.
// Callstack_debug_map serializes tuples of
// (int64_t(debug_handle), int64_t(source_range_tag), InlinedCallStack)
// source_range_tag maps to .debug_pkl files where this tag maps it to
// source range.
// InlinedCallStack is serialized as:
// IValue(InlinedCallStack) = {IValue(ModuleInstanceInfo),
// int64_t(source_range_tag), IValue(InlinedCallStack)} ModuleInstanceInfo is
// serialized as a tuple of (class_type_name, instance_name)
// Note that currently the backward compatibility is not supported by bytecode.
// This format and process need to be revisited and redesigned if we want to
// support backward compatibility in future.
// Note that the following function-schema fields are not supported:
// - Argument::{known_length_,kwarg_only_}
// - FunctionSchema::{overload_name_, is_vararg_, is_varret_}
namespace c10 {
// std::string serializeType(const Type &t);
TypePtr parseType(const std::string& pythonStr);
} // namespace c10
namespace torch {
namespace jit {
using caffe2::serialize::IStreamAdapter;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::ReadAdapterInterface;
OpCode parseOpCode(const char* str);
const IValue& expect_field(
const IValue& tup,
const std::string& expected_name,
size_t entry) {
auto row = tup.toTuple()->elements().at(entry).toTuple();
TORCH_INTERNAL_ASSERT(
row->elements().at(0).toStringRef() == expected_name,
"Expected ",
expected_name,
" found ",
row->elements().at(0).toStringRef());
return row->elements().at(1);
}
std::string operator_str(
const std::string& name,
const std::string& overloadname) {
std::string result = name;
if (!overloadname.empty()) {
result += "." + overloadname;
}
return result;
}
TypePtr resolveTypeNameMobile(
const c10::QualifiedName& qn,
std::shared_ptr<CompilationUnit> compilation_unit) {
// HACK: first we check whether the name starts with special prefix to
// tell if it's a supported pytorch class type. There are two special
// prefixes. "__torch__" for nn module, and "torch.jit" from to_backend.
// This is a reliable
// check today, but there is no guarantee that this is the case. The
// real solution is to merge type parsers so we can share class
// resolution logic.
static const c10::QualifiedName torchPrefix = "__torch__";
static const c10::QualifiedName jitPrefix = "torch.jit";
if (torchPrefix.isPrefixOf(qn) || jitPrefix.isPrefixOf(qn)) {
if (compilation_unit->get_class(qn) == nullptr) {
auto typeptr = ClassType::create(qn, compilation_unit, true);
compilation_unit->register_type(typeptr);
}
return compilation_unit->get_class(qn);
} else {
return c10::parseType(qn.qualifiedName());
}
}
c10::StrongTypePtr typeResolverMobile(
const c10::QualifiedName& qn,
std::shared_ptr<CompilationUnit> compilation_unit) {
return c10::StrongTypePtr(
compilation_unit, resolveTypeNameMobile(qn, compilation_unit));
}
c10::intrusive_ptr<c10::ivalue::Object> objLoaderMobile(
at::StrongTypePtr type,
IValue input,
std::shared_ptr<mobile::CompilationUnit> mobile_compilation_unit) {
auto cls = type.type_->expect<at::ClassType>();
auto qn = cls->name();
c10::QualifiedName method_name(qn.value(), "__setstate__");
auto setstate = mobile_compilation_unit->find_function(method_name);
auto find_custom_class_with_setstate = [&qn]() -> c10::ClassTypePtr {
auto custom_class_type = torch::jit::getCustomClass(qn->qualifiedName());
if (custom_class_type && custom_class_type->findMethod("__setstate__")) {
return custom_class_type;
}
return nullptr;
};
if (setstate) {
auto obj = c10::ivalue::Object::create(type, 0);
Stack stack({obj, input});
setstate->run(stack);
return obj;
} else if (auto custom_class_type = find_custom_class_with_setstate()) {
auto obj = c10::ivalue::Object::create(
c10::StrongTypePtr(nullptr, custom_class_type), 1);
Stack stack({obj, input});
custom_class_type->getMethod("__setstate__").run(stack);
return obj;
} else {
auto dict = std::move(input).toGenericDict();
size_t ndict = dict.size();
auto obj = c10::ivalue::Object::create(type, ndict);
auto it = dict.begin();
for (const auto i : c10::irange(ndict)) {
std::stringstream name;
name << it->key();
cls->addOrCheckAttribute(name.str(), it->key().type());
obj->setSlot(i, it->value());
++it;
}
return obj;
}
}
bool isTensorInBytecodeArchive(
caffe2::serialize::PyTorchStreamReader& stream_reader) {
auto records = stream_reader.getAllRecords();
for (const auto& record : records) {
if (record.find("bytecode/") != std::string::npos) {
return true;
}
}
return false;
}
namespace {
void print_unsupported_ops_and_throw(
const std::unordered_set<std::string>& unsupported_ops) {
std::string error_message("{");
for (const auto& op_name : unsupported_ops) {
error_message += op_name + ", ";
}
error_message += "}";
TORCH_CHECK(
false,
"Following ops cannot be found. ",
"Check fburl.com/missing_ops for the fix.",
error_message);
}
// The deserializer class which loads the bytecode package from bc files.
class BytecodeDeserializer final {
public:
explicit BytecodeDeserializer(
std::unique_ptr<PyTorchStreamReader> reader,
uint64_t module_load_options = 0);
mobile::Module deserialize(c10::optional<at::Device> device);
mobile::Module deserialize(
c10::optional<at::Device> device,
ExtraFilesMap& extra_files);
void deserialize_only_extra(
c10::optional<at::Device> device,
ExtraFilesMap& extra_files);
private:
TypePtr resolveTypeName(const c10::QualifiedName& qn);
void parseMethods(
const std::vector<IValue>& vals,
const c10::optional<std::vector<IValue>>& debug_handles,
mobile::CompilationUnit& mcu);
c10::IValue readArchive(
const std::string& archive_name,
std::shared_ptr<mobile::CompilationUnit> mcu);
/**
* Loads operators by looking them up in the Dispatcher and returns
* the set of operator names (with overload) that are not supported
* by the current runtime.
*
* Accepts an operator_cache, which allows you to cache operator
* functions for the entire model. This is keyed on
* c10::OperatorName. The value may not be what you're looking for
* even if the key is the same. You need to call has_same_arg_num()
* on the value to ensure that the number of arguments are the same.
*/
std::unordered_set<std::string> load_and_find_unsupported_operator_names(
const std::vector<IValue>& ops_list,
mobile::Function* function,
int64_t model_version,
mobile::Function::OperatorCacheType& operator_cache) const;
std::shared_ptr<CompilationUnit> compilation_unit_;
std::unordered_set<std::string> imported_libs_;
std::unique_ptr<PyTorchStreamReader> reader_{};
c10::optional<at::Device> device_;
uint64_t module_load_options_;
};
BytecodeDeserializer::BytecodeDeserializer(
std::unique_ptr<PyTorchStreamReader> reader,
uint64_t module_load_options)
: compilation_unit_(std::make_shared<CompilationUnit>()),
reader_(std::move(reader)),
module_load_options_(module_load_options) {}
std::unordered_set<std::string> BytecodeDeserializer::
load_and_find_unsupported_operator_names(
const std::vector<IValue>& ops_list,
mobile::Function* function,
int64_t model_version,
mobile::Function::OperatorCacheType& operator_cache) const {
std::unordered_set<std::string> unsupported_op_names;
// ops_list is the list of operator names that were read in from
// bytecode.plk for the method that is currently being processed.
for (const auto& op : ops_list) {
auto op_item = op.toTuple()->elements();
TORCH_CHECK(
op_item.size() >= 2,
"There should be either two parts (name and overload name), ",
"or three parts (name, overload name and number of specified args) ",
"for an operator");
c10::optional<int> num_args;
if (op_item.size() > 2) {
num_args = op_item[2].toInt();
}
auto op_found = function->append_operator(
op_item[0].toString()->string(),
op_item[1].toString()->string(),
num_args,
model_version,
operator_cache);
if (!op_found) {
unsupported_op_names.emplace(operator_str(
op_item[0].toString()->string(), op_item[1].toString()->string()));
}
}
return unsupported_op_names;
}
TypePtr BytecodeDeserializer::resolveTypeName(const c10::QualifiedName& qn) {
return resolveTypeNameMobile(qn, compilation_unit_);
}
void BytecodeDeserializer::parseMethods(
const std::vector<IValue>& vals,
const c10::optional<std::vector<IValue>>& debug_handles,
mobile::CompilationUnit& mcu) {
TORCH_CHECK(vals.size() > 0, "Bytecode has no elements. ");
// Initialized with the version number when kProducedBytecodeVersion was
// introduced. The old models (some of them already in production) without
// version number don't have to be re-generated.
int64_t model_version = 0x3L;
size_t method_i_start = 0;
if (vals[0].isInt()) {
model_version = vals[0].toInt();
method_i_start = 1;
}
TORCH_CHECK(
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
caffe2::serialize::kMinSupportedBytecodeVersion <= model_version &&
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
model_version <= caffe2::serialize::kMaxSupportedBytecodeVersion,
"Lite Interpreter version number does not match. ",
"The model version must be between ",
caffe2::serialize::kMinSupportedBytecodeVersion,
" and ",
caffe2::serialize::kMaxSupportedBytecodeVersion,
" but the model version is ",
model_version);
if (debug_handles) {
TORCH_CHECK(
debug_handles->size() == vals.size(),
"The numbers of bytecode values and debug info values do not match.");
}
// A Global Cache for Operator functions across all methods in the model.
mobile::Function::OperatorCacheType operator_cache;
// Process all methods in this mobile module.
for (const auto i : c10::irange(method_i_start, vals.size())) {
const auto& element = vals[i];
const auto& m_tuple = element.toTuple()->elements();
const std::string& function_name = m_tuple[0].toStringRef();
const IValue& codeTable = m_tuple[1];
const IValue* schemaTable = // older files do not store function schema
(model_version > 0x4L || (model_version == 0x4L && m_tuple.size() >= 3))
? &m_tuple[2]
: nullptr;
auto function =
std::make_unique<mobile::Function>(c10::QualifiedName(function_name));
const auto& ins_list =
expect_field(codeTable, "instructions", BYTECODE_INDEX_INSTRUCTION)
.toTuple()
->elements();
const auto& ops_list =
expect_field(codeTable, "operators", BYTECODE_INDEX_OPERATOR)
.toTuple()
->elements();
const auto& consts_list =
expect_field(codeTable, "constants", BYTECODE_INDEX_CONSTANT)
.toTuple()
->elements();
const auto& types_list =
expect_field(codeTable, "types", BYTECODE_INDEX_TYPE)
.toTuple()
->elements();
const auto& register_size =
expect_field(codeTable, "register_size", BYTECODE_INDEX_REGISTER_SIZE)
.toInt();
c10::List<int64_t> debug_handles_list;
if (debug_handles) {
const auto& debug_handles_element = (*debug_handles)[i];
const auto& debug_handles_m_tuple =
debug_handles_element.toTuple()->elements();
const std::string& debug_info_function_name =
debug_handles_m_tuple[0].toStringRef();
TORCH_CHECK(
debug_info_function_name == function_name,
"The function names in the bytecode table and the debug info table do not match.");
const IValue& debug_handles_table = debug_handles_m_tuple[1];
debug_handles_list = (expect_field(
debug_handles_table,
"function_debug_handles",
BYTECODE_INDEX_MODULE_DEBUG_HANDLES)
.toTuple()
->elements())[0]
.toIntList();
TORCH_CHECK(
debug_handles_list.size() == ins_list.size(),
"The numbers of instructions and debug handles strings do not match.");
}
for (const auto j : c10::irange(ins_list.size())) {
const auto& ins_item = ins_list[j].toTuple()->elements();
TORCH_CHECK(
ins_item.size() == 3,
"There should be three parts in an instruction. The function name is ",
function_name);
OpCode op_code = parseOpCode(ins_item[0].toString()->string().c_str());
int X = ins_item[1].toInt();
int N = ins_item[2].toInt();
if (debug_handles) {
int64_t debug_handle = debug_handles_list[j];
function->append_instruction(op_code, X, N, debug_handle);
} else {
function->append_instruction(op_code, X, N);
}
}
std::unordered_set<std::string> unsupported_op_names =
load_and_find_unsupported_operator_names(
ops_list, function.get(), model_version, operator_cache);
if ((module_load_options_ & MobileModuleLoadOptions::OPERATOR_CHECK) &&
!unsupported_op_names.empty()) {
print_unsupported_ops_and_throw(unsupported_op_names);
}
for (const auto& constant : consts_list) {
function->append_constant(constant);
}
static const c10::QualifiedName classPrefix = "__torch__.torch.classes";
for (const auto& t : types_list) {
c10::QualifiedName qn(t.toStringRef());
if (classPrefix.isPrefixOf(qn)) {
auto classType = getCustomClass(qn.qualifiedName());
TORCH_CHECK(
classType,
"The implementation of class ",
qn.qualifiedName(),
" cannot be found.");
function->append_type(classType);
} else {
function->append_type(c10::parseType(t.toStringRef()));
}
}
function->set_register_size(register_size);
// function schema
if (schemaTable) { // (schema is optional for back compat)
auto parseArgList = [this](const std::vector<IValue>& argTables) {
std::vector<c10::Argument> args;
for (auto&& argTable : argTables) {
auto name =
expect_field(argTable, "name", BYTECODE_INDEX_ARGUMENT_NAME)
.toStringRef();
const auto& type = resolveTypeName(
(expect_field(argTable, "type", BYTECODE_INDEX_ARGUMENT_TYPE))
.toStringRef());
const IValue& default_value = expect_field(
argTable, "default_value", BYTECODE_INDEX_ARGUMENT_DEFAULT_VALUE);
args.emplace_back(name, type, c10::nullopt /*N*/, default_value);
}
return args;
};
const auto& arg_list =
expect_field(
*schemaTable, "arguments", BYTECODE_INDEX_SCHEMA_ARGUMENTS)
.toTuple()
->elements();
const auto& ret_list =
expect_field(*schemaTable, "returns", BYTECODE_INDEX_SCHEMA_RETURNS)
.toTuple()
->elements();
c10::FunctionSchema schema(
function_name,
"" /*overload_name*/,
parseArgList(arg_list),
parseArgList(ret_list),
false /*is_varargs*/,
false /*is_varret*/);
function->setSchema(std::move(schema));
}
mcu.register_function(std::move(function));
}
}
void BytecodeDeserializer::deserialize_only_extra(
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
device_ = device;
for (const auto& kv : extra_files) {
const std::string& key = "extra/" + kv.first;
if (reader_->hasRecord(key)) {
at::DataPtr meta_ptr;
size_t meta_size = 0;
std::tie(meta_ptr, meta_size) = reader_->getRecord(key);
extra_files[kv.first] =
std::string(static_cast<char*>(meta_ptr.get()), meta_size);
}
}
}
mobile::Module BytecodeDeserializer::deserialize(
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
deserialize_only_extra(device, extra_files);
return deserialize(device);
}
mobile::Module BytecodeDeserializer::deserialize(
c10::optional<at::Device> device) {
device_ = device;
auto mcu = std::make_shared<mobile::CompilationUnit>();
// bvals can have 2 possible formats:
//
// 1. Old format: bvals is an array (Tuple) of N elements, each element being
// itself a Tuple(method_name, method_table).
//
// 2. New format: bvals is an array (Tuple) of 1+N elements. The first element
// being a Tuple (int, table), and the integer stands for the bytecode version
// number. The rest of the elements are the same as before.
//
auto bvals = std::move(*readArchive("bytecode", mcu).toTuple()).elements();
c10::optional<std::vector<IValue>> debug_handles;
bool has_debug_handles{false};
if (reader_->hasRecord("mobile_debug_handles.pkl")) {
debug_handles =
readArchive("mobile_debug_handles", mcu).toTuple()->elements();
has_debug_handles = true;
}
parseMethods(bvals, debug_handles, *mcu);
auto m = mobile::Module(readArchive("data", mcu).toObject(), mcu);
m.setHasDebugHandles(has_debug_handles);
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
MobileDebugTable debug_table = MobileDebugTable(reader_, compilation_unit_);
m.setDebugTable(std::move(debug_table));
#endif
return m;
}
c10::IValue BytecodeDeserializer::readArchive(
const std::string& archive_name,
std::shared_ptr<mobile::CompilationUnit> mcu) {
auto type_resolver = [this](const c10::QualifiedName& qn) {
return typeResolverMobile(qn, compilation_unit_);
};
auto obj_loader = [&](at::StrongTypePtr type, IValue input) {
return objLoaderMobile(type, input, mcu);
};
bool bytecode_tensor_in_constants_archive =
(archive_name == "bytecode" &&
!isTensorInBytecodeArchive(*reader_.get()));
auto ivalues = torch::jit::readArchiveAndTensors(
archive_name,
/*pickle_prefix=*/"",
/*tensor_prefix=*/
bytecode_tensor_in_constants_archive ? "constants/" : "",
type_resolver,
obj_loader,
device_,
*reader_.get());
return ivalues;
}
} // namespace
// Forward declare so that _load_for_mobile() overloads can
// call this method directly.
mobile::Module _load_for_mobile_impl(
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device,
ExtraFilesMap& extra_files,
uint64_t module_load_options);
mobile::Module _load_for_mobile(
std::istream& in,
c10::optional<at::Device> device) {
ExtraFilesMap extra_files;
return _load_for_mobile(in, device, extra_files);
}
mobile::Module _load_for_mobile(
const std::string& filename,
c10::optional<at::Device> device) {
ExtraFilesMap extra_files;
return _load_for_mobile(filename, device, extra_files);
}
mobile::Module _load_for_mobile(
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device) {
ExtraFilesMap extra_files;
return _load_for_mobile(std::move(rai), device, extra_files);
}
mobile::Module _load_for_mobile(
std::istream& in,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
std::unique_ptr<IStreamAdapter> rai = std::make_unique<IStreamAdapter>(&in);
auto module = _load_for_mobile(std::move(rai), device, extra_files);
return module;
}
mobile::Module _load_for_mobile(
const std::string& filename,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
std::unique_ptr<FileAdapter> rai = std::make_unique<FileAdapter>(filename);
auto module = _load_for_mobile(std::move(rai), device, extra_files);
return module;
}
mobile::Module _load_for_mobile(
const std::string& filename,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files,
uint64_t module_load_options) {
std::unique_ptr<FileAdapter> rai = std::make_unique<FileAdapter>(filename);
auto module = _load_for_mobile_impl(
std::move(rai), device, extra_files, module_load_options);
return module;
}
mobile::Module _load_for_mobile(
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device,
ExtraFilesMap& extra_files) {
auto module = _load_for_mobile_impl(
std::move(rai), device, extra_files, _default_mobile_module_load_options);
return module;
}
mobile::Module _load_for_mobile_impl(
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device,
ExtraFilesMap& extra_files,
uint64_t module_load_options) {
auto observer = torch::observerConfig().getModuleObserver();
// NOLINTNEXTLINE(clang-analyzer-security.insecureAPI.rand)
auto instance_key = std::rand();
std::unordered_map<std::string, std::string> metadata_map;
if (observer) {
observer->onEnterLoadModel(instance_key);
auto defaultExtraFileList = observer->getDefaultExtraFiles();
// Add files in defaultExtraFileList to fail_extra_files and extra_files
for (const auto& fileName : defaultExtraFileList) {
extra_files.insert(std::make_pair(fileName, ""));
}
}
const size_t model_size = rai != nullptr ? rai->size() : 0;
auto reader = torch::make_unique<PyTorchStreamReader>(std::move(rai));
BytecodeDeserializer deserializer(std::move(reader), module_load_options);
std::string error_message;
auto guard = c10::make_scope_exit([&]() {
if (!observer) {
return;
}
deserializer.deserialize_only_extra(device, extra_files);
metadata_map = observer->processMetadataFromExtra(extra_files);
observer->onFailLoadModel(
instance_key,
error_message.empty() ? "Unknown exception" : error_message.c_str(),
metadata_map);
});
try {
mobile::Module result = deserializer.deserialize(device, extra_files);
if (observer) {
// Add model_name and model_size to metadata_map
extra_files.insert(std::make_pair("model_name", result.name()));
extra_files.insert(
std::make_pair("model_size", c10::guts::to_string(model_size)));
metadata_map = observer->processMetadataFromExtra(extra_files);
observer->onExitLoadModel(instance_key, metadata_map);
}
result.setMetadata(metadata_map);
guard.release();
return result;
} catch (c10::Error& error) {
error_message = error.what();
TORCH_RETHROW(error);
}
}
void _load_extra_only_for_mobile(
const std::string& filename,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
std::unique_ptr<FileAdapter> rai = std::make_unique<FileAdapter>(filename);
auto observer = torch::observerConfig().getModuleObserver();
// NOLINTNEXTLINE(clang-analyzer-security.insecureAPI.rand)
auto instance_key = std::rand();
if (observer) {
observer->onEnterLoadModel(instance_key);
}
auto reader = torch::make_unique<PyTorchStreamReader>(std::move(rai));
BytecodeDeserializer deserializer(std::move(reader));
deserializer.deserialize_only_extra(device, extra_files);
}
namespace mobile {
std::set<std::string> _export_operator_list(
torch::jit::mobile::Module& module) {
std::set<std::string> operator_list;
for (Method func : module.get_methods()) {
const Function& function = func.function();
const std::shared_ptr<Code> cptr = function.get_code();
// op_names below isn't a list of unique operator names. In fact
// it can contain the same operator name many many times, so we need
// to de-dup the list by adding all the operator names into
// an std::set<std::string>.
std::vector<c10::OperatorName> const& op_names = cptr->op_names_;
for (auto& op_name : op_names) {
operator_list.insert(toString(op_name));
}
}
return operator_list;
}
} // namespace mobile
} // namespace jit
} // namespace torch