forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuiltin_functions.cpp
263 lines (234 loc) · 8.97 KB
/
builtin_functions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#include <torch/csrc/jit/frontend/builtin_functions.h>
#include <torch/csrc/api/include/torch/jit.h>
#include <torch/csrc/jit/frontend/code_template.h>
#include <torch/csrc/jit/frontend/resolver.h>
namespace torch {
namespace jit {
auto scalar_operators_source = CodeTemplate(
R"SCRIPT(
def mul(a : ${Scalar}, b : Tensor) -> Tensor:
return b * a
def add(a : ${Scalar}, b : Tensor) -> Tensor:
return b + a
def ne(a : ${Scalar}, b : Tensor) -> Tensor:
return b != a
def eq(a : ${Scalar}, b : Tensor) -> Tensor:
return b == a
def lt(a : ${Scalar}, b : Tensor) -> Tensor:
return b > a
def le(a : ${Scalar}, b : Tensor) -> Tensor:
return b >= a
def gt(a : ${Scalar}, b : Tensor) -> Tensor:
return b < a
def ge(a : ${Scalar}, b : Tensor) -> Tensor:
return b <= a
def sub(a : ${Scalar}, b : Tensor) -> Tensor:
return torch.neg(b) + a
def div(a : ${Scalar}, b : Tensor) -> Tensor:
return torch.reciprocal(b) * a
)SCRIPT");
auto _ntuple_ops = CodeTemplate(
R"SCRIPT(
def _${name}(x: BroadcastingList${Length}[${Scalar}]) -> List[${Scalar}]:
return x
)SCRIPT");
auto floordiv = CodeTemplate(
R"SCRIPT(
def floordiv(self : Tensor, other : ${Rhs_Type}) -> Tensor:
return torch.floor_divide(self, other)
)SCRIPT");
auto tensor_properties =
R"SCRIPT(
def ndim(a : Tensor) -> int:
return a.dim()
def T(a : Tensor) -> Tensor:
return a.numpy_T()
def shape(a : Tensor) -> List[int]:
return a.size()
)SCRIPT";
// _assert_int_or_pair is only here for backwards-compatibility with the
// aten::_assert_int_or_pair op which was removed once we were able to compile
// torch.nn.functional.assert_int_or_pair
// list_with_default also needs to be here for BC
auto aten_ops =
R"SCRIPT(
def _assert_int_or_pair(vals: List[int], name: str, message: str):
pass
def list_with_default(out_size: List[int], defaults: List[int]):
assert len(defaults) > len(out_size)
return out_size
def _assert(condition : bool, message : str):
assert condition, message
def type(self: Tensor, dtype: int, non_blocking: bool=False, copy: bool=False) -> Tensor:
return self.to(dtype, non_blocking, copy)
)SCRIPT";
// an additional overload for Tensor variant of _assert
const auto aten_ops_additional =
R"SCRIPT(
def _assert(condition : Tensor, message : str):
assert bool(condition), message
def __contains__(self: str, key: str):
return self.find(key, 0, len(self)) != -1
)SCRIPT";
// Implementations of historic symbol behaviors are defined here
// See note [Versioned Symbols]
// This builtin is for testing
auto _test_serialization_subcmul = R"SCRIPT(
def _test_serialization_subcmul_0_2(self: Tensor, other:Tensor, alpha: number=2) -> Tensor:
return other - (self * alpha)
)SCRIPT";
// Division versioned symbols, for Torchscript programs serialized when
// division on integer tensors was floor division, not true division.
// Tensor x Tensor
// NOTE: testing for the tensors being float tensors is sufficient here,
// because the Torchscript versions this fix applies to (0 through 3)
// did not support complex tensors.
auto div_tensor = R"SCRIPT(
def div_0_3(self: Tensor, other: Tensor) -> Tensor:
if (self.is_floating_point() or other.is_floating_point()):
return self.true_divide(other)
return self.divide(other, rounding_mode='trunc')
)SCRIPT";
// Tensor x Scalar
auto div_tensor_scalar = R"SCRIPT(
def div_0_3(self: Tensor, other: number) -> Tensor:
if (self.is_floating_point() or isinstance(other, float)):
return self.true_divide(other)
return self.divide(other, rounding_mode='trunc')
)SCRIPT";
// Scalar x Scalar
auto div_scalar_scalar = R"SCRIPT(
def div_0_3(self: number, other: number) -> number:
return self / other
)SCRIPT";
// Tensor x Tensor with out kwarg
// NOTE: the JIT doesn't support Tensor x Scalar with the out kwarg
auto div_tensor_out = R"SCRIPT(
def div_0_3(self: Tensor, other: Tensor, *, out: Tensor) -> Tensor:
if (self.is_floating_point() or other.is_floating_point() or out.is_floating_point()):
return self.true_divide(other, out=out)
return self.divide(other, rounding_mode='trunc', out=out)
)SCRIPT";
// Tensor x Tensor inplace
auto div__tensor = R"SCRIPT(
def div__0_3(self: Tensor, other: Tensor) -> Tensor:
if (self.is_floating_point() or other.is_floating_point()):
return self.true_divide_(other)
return self.divide_(other, rounding_mode='trunc')
)SCRIPT";
// Tensor x Scalar inplace
auto div__scalar = R"SCRIPT(
def div__0_3(self: Tensor, other: number) -> Tensor:
if (self.is_floating_point() or isinstance(other, float)):
return self.true_divide_(other)
return self.divide_(other, rounding_mode='trunc')
)SCRIPT";
// NOTE: torch.full would historically infer a float dtype for bool and
// integral fill values.
// NOTE: Torchscript does not currently support complex values
// NOTE: Torchscript does not currently support named tensors, although
// torch.full does have a named tensor variant
auto full = R"SCRIPT(
def full_0_4(size:List[int], fill_value:number, *, dtype:Optional[int]=None,
layout:Optional[int]=None, device:Optional[Device]=None,
pin_memory:Optional[bool]=None) -> Tensor:
if dtype is None:
fill_value = float(fill_value)
return torch.full(size, fill_value, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory)
)SCRIPT";
// NOTE: the out variant of full works the same, but must be overridden
// since the other variant of full is overridden
auto full_out = R"SCRIPT(
def full_0_4(size:List[int], fill_value:number, *, out:Tensor) -> Tensor:
return torch.full(size, fill_value, out=out)
)SCRIPT";
struct BuiltinFunctionRegistry {
const std::vector<Function*>& getAllBuiltinFunctionsFor(Symbol name) {
const static std::vector<Function*> empty;
// when initializing the builtin function library, we will re-enter
// getAllBuiltinFunctionsFor since it is called in the compiler to
// lookup builtins and initializing the builtin functions calls the
// compiler. To avoid deadlocking, we use a recursive mutex (same thread can
// re-lock, the mutex without waiting), and report no loaded builtins during
// init.
std::lock_guard<std::recursive_mutex> guard(mutex);
if (state == INTIIALIZING) {
return empty;
} else if (state == UNINITIALIZED) {
state = INTIIALIZING;
loadBuiltinFunctions();
state = INITIALIZED;
}
AT_ASSERT(state == INITIALIZED);
auto it = builtins_by_name_.find(name);
if (it == builtins_by_name_.end())
return empty;
return it->second;
}
private:
void loadSource(const std::string& source, const std::string& the_namespace) {
std::shared_ptr<CompilationUnit> cu = std::make_shared<CompilationUnit>();
modules.emplace_back(cu);
cu->define(c10::nullopt, source, nativeResolver(), /*self=*/nullptr);
for (auto& method : cu->get_functions()) {
builtins_by_name_[Symbol::fromQualString(
the_namespace + "::" + method->name())]
.push_back(method);
}
}
void loadBuiltinFunctions() {
for (auto scalar : {"float", "int"}) {
TemplateEnv env;
env.s("Scalar", scalar);
loadSource(scalar_operators_source.format(env), "aten");
}
using str_pair = std::pair<std::string, std::string>;
const std::vector<str_pair> name_len = {
str_pair("single", "1"),
str_pair("pair", "2"),
str_pair("triple", "3"),
str_pair("quadruple", "4"),
};
for (const auto scalar : {"float", "int"}) {
for (const auto& pair : name_len) {
TemplateEnv env;
env.s("Scalar", scalar);
env.s("name", pair.first);
env.s("Length", pair.second);
loadSource(_ntuple_ops.format(env), "aten");
}
}
for (auto rhs : {"number", "Tensor"}) {
TemplateEnv env;
env.s("Rhs_Type", rhs);
loadSource(floordiv.format(env), "aten");
}
loadSource(aten_ops, "aten");
loadSource(aten_ops_additional, "aten");
// Loads functions implementing historic behavior, see note [Versioned
// Symbols]
// Note: these functions go into the "upgraders" namespace
loadSource(_test_serialization_subcmul, "upgraders");
loadSource(div_tensor, "upgraders");
loadSource(div_tensor_scalar, "upgraders");
loadSource(div_scalar_scalar, "upgraders");
loadSource(div__tensor, "upgraders");
loadSource(div_tensor_out, "upgraders");
loadSource(div__scalar, "upgraders");
loadSource(full, "upgraders");
loadSource(full_out, "upgraders");
// These are under `prim` instead of `aten` since they exist to bind certain
// tensor property getters to correpsonding methods
loadSource(tensor_properties, "prim");
}
enum { UNINITIALIZED, INTIIALIZING, INITIALIZED } state = UNINITIALIZED;
std::recursive_mutex mutex;
std::vector<std::shared_ptr<CompilationUnit>> modules;
std::unordered_map<Symbol, std::vector<Function*>> builtins_by_name_;
};
const std::vector<Function*>& getAllBuiltinFunctionsFor(Symbol name) {
static BuiltinFunctionRegistry registry;
return registry.getAllBuiltinFunctionsFor(name);
}
} // namespace jit
} // namespace torch