forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_models_onnxruntime.py
43 lines (31 loc) · 1.52 KB
/
test_models_onnxruntime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import unittest
import onnxruntime # noqa: F401
from test_models import TestModels
from test_pytorch_onnx_onnxruntime import run_model_test
import torch
def exportTest(self, model, inputs, rtol=1e-2, atol=1e-7, opset_versions=None):
opset_versions = opset_versions if opset_versions else [7, 8, 9, 10, 11, 12, 13, 14]
for opset_version in opset_versions:
self.opset_version = opset_version
run_model_test(self, model, False,
input=inputs, rtol=rtol, atol=atol)
if self.is_script_test_enabled and opset_version > 11:
TestModels.onnx_shape_inference = True
outputs = model(inputs)
script_model = torch.jit.script(model)
run_model_test(self, script_model, False, example_outputs=outputs,
input=inputs, rtol=rtol, atol=atol)
TestModels = type(str("TestModels"),
(unittest.TestCase,),
dict(TestModels.__dict__,
is_script_test_enabled=False,
exportTest=exportTest))
# model tests for scripting with new JIT APIs and shape inference
TestModels_new_jit_API = type(str("TestModels_new_jit_API"),
(unittest.TestCase,),
dict(TestModels.__dict__,
exportTest=exportTest,
is_script_test_enabled=True,
onnx_shape_inference=True))
if __name__ == "__main__":
unittest.main()