forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLinearAlgebra.cu
155 lines (131 loc) · 4.5 KB
/
LinearAlgebra.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#include <ATen/ATen.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/Dispatch.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/LinearAlgebra.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/SharedReduceOps.h>
#include <ATen/native/ReduceOps.h>
namespace at { namespace native {
namespace {
void addr_kernel_cuda(TensorIterator &iter, const Scalar& beta, const Scalar& alpha) {
if (iter.dtype() == ScalarType::Bool) {
using scalar_t = bool;
auto beta_val = beta.to<scalar_t>();
auto alpha_val = alpha.to<scalar_t>();
// when beta is false, values in self should be ignored,
// nans and infs in self should not propagate.
if (beta_val == false) {
gpu_kernel(
iter,
[=] GPU_LAMBDA (scalar_t self_val,
scalar_t vec1_val, scalar_t vec2_val) -> scalar_t {
return alpha_val && vec1_val && vec2_val;
}
);
} else {
gpu_kernel(
iter,
[=] GPU_LAMBDA (scalar_t self_val,
scalar_t vec1_val, scalar_t vec2_val) -> scalar_t {
return (beta_val && self_val) || (alpha_val && vec1_val && vec2_val);
}
);
}
return;
}
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(kBFloat16, kHalf,
iter.dtype(), "addr_cuda", [&] {
auto beta_val = beta.to<scalar_t>();
auto alpha_val = alpha.to<scalar_t>();
scalar_t zero_val(0);
// when beta==0, values in self should be ignored,
// nans and infs in self should not propagate.
if (beta_val == zero_val) {
gpu_kernel(
iter,
[=] GPU_LAMBDA (scalar_t self_val,
scalar_t vec1_val, scalar_t vec2_val) -> scalar_t {
return alpha_val * vec1_val * vec2_val;
}
);
} else {
gpu_kernel(
iter,
[=] GPU_LAMBDA (scalar_t self_val,
scalar_t vec1_val, scalar_t vec2_val) -> scalar_t {
return beta_val * self_val + alpha_val * vec1_val * vec2_val;
}
);
}
});
}
template <int n_threads, int n_elems_per_thread, typename func_t>
C10_LAUNCH_BOUNDS_2(n_threads, n_elems_per_thread)
__global__ void _elementwise_kernel(int total_n_elems, func_t f) {
constexpr int total_work_block = n_threads * n_elems_per_thread;
int idx = total_work_block * blockIdx.x + threadIdx.x;
#pragma unroll
for (int i = 0; i < n_elems_per_thread; ++i) {
if (idx < total_n_elems) {
f(idx);
idx += n_threads;
}
}
}
template <int n_threads, int n_elems_per_thread, typename func_t>
static void _launch_kernel(int total_n_elems, func_t f) {
TORCH_INTERNAL_ASSERT(
total_n_elems >= 0 && total_n_elems <= std::numeric_limits<int32_t>::max()
);
dim3 block(n_threads);
constexpr int total_work_block = n_threads * n_elems_per_thread;
dim3 grid((total_n_elems + total_work_block - 1) / total_work_block);
auto stream = at::cuda::getCurrentCUDAStream();
_elementwise_kernel<n_threads, n_elems_per_thread, func_t>
<<<grid, block, 0, stream>>>(total_n_elems, f);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
void _unpack_pivots_internal_kernel(
TensorIterator& iter,
int64_t dim_size
) {
if (iter.numel() == 0) {
return;
}
if (!iter.can_use_32bit_indexing()) {
for (auto& sub_iter : iter.with_32bit_indexing()) {
_unpack_pivots_internal_kernel(sub_iter, dim_size);
}
return;
}
auto offset_calculator = make_offset_calculator<2>(iter);
char* unpacked_pivots_ptr = reinterpret_cast<char*>(iter.data_ptr(0));
const char* const __restrict__ pivots_ptr = reinterpret_cast<const char*>(iter.data_ptr(1));
auto loop = [=]C10_DEVICE(int i) {
auto offsets = offset_calculator.get(i);
auto* unpacked_pivots_data = reinterpret_cast<int32_t*>(
unpacked_pivots_ptr + offsets[0]);
const auto* const __restrict__ pivots_data = reinterpret_cast<const int32_t*>(
pivots_ptr + offsets[1]);
// QUESTION: can we mix 64bit offsets with 32bit Iterator indexing?
for (int64_t i = 0; i < dim_size; ++i) {
thrust::swap(
unpacked_pivots_data[i],
unpacked_pivots_data[pivots_data[i]]
);
}
};
_launch_kernel<num_threads, thread_work_size>(iter.numel(), loop);
}
void unpack_pivots_cuda_kernel(
TensorIterator& iter,
int64_t dim_size
) {
_unpack_pivots_internal_kernel(iter, dim_size);
}
} // anonymous namespace
REGISTER_DISPATCH(addr_stub, &addr_kernel_cuda);
REGISTER_DISPATCH(unpack_pivots_stub, &unpack_pivots_cuda_kernel);
}}