forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathParallelOpenMP.cpp
117 lines (101 loc) · 2.89 KB
/
ParallelOpenMP.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#include <ATen/Config.h>
#include <ATen/core/jit_type.h>
#if AT_PARALLEL_OPENMP
#include <ATen/Parallel.h>
#include <atomic>
#ifdef TH_BLAS_MKL
#include <mkl.h>
#endif
#include <caffe2/utils/threadpool/pthreadpool-cpp.h>
namespace at {
#if AT_MKLDNN_ENABLED()
namespace native { namespace mkldnn {
void clear_computation_cache();
}} // namespace native::mkldnn
#endif
namespace {
// Number of threads set by the user
std::atomic<int> num_threads{-1};
thread_local int this_thread_id{0};
} // namespace
void init_num_threads() {
auto nthreads = num_threads.load();
if (nthreads > 0) {
set_num_threads(nthreads);
} else {
#if defined(_OPENMP) && defined(TH_BLAS_MKL) && !defined(TH_BLAS_MKL_SEQ)
// If we are using MKL an OpenMP make sure the number of threads match.
// Otherwise, MKL and our OpenMP-enabled functions will keep changing the
// size of the OpenMP thread pool, resulting in worse performance (and memory
// leaks in GCC 5.4)
omp_set_num_threads(mkl_get_max_threads());
#elif defined(_OPENMP)
omp_set_num_threads(intraop_default_num_threads());
#endif
}
}
void set_num_threads(int nthreads) {
TORCH_CHECK(nthreads > 0, "Expected positive number of threads");
num_threads.store(nthreads);
#ifdef _OPENMP
omp_set_num_threads(nthreads);
#endif
#ifdef TH_BLAS_MKL
mkl_set_num_threads_local(nthreads);
// because PyTorch uses OpenMP outside of MKL invocations
// as well, we want this flag to be false, so that
// threads aren't destroyed and recreated across every
// MKL / non-MKL boundary of OpenMP usage
// See https://github.com/pytorch/pytorch/issues/13757
mkl_set_dynamic(false);
#endif
#ifdef USE_PTHREADPOOL
// because PyTorch uses caffe2::pthreadpool() in QNNPACK
caffe2::PThreadPool* const pool = caffe2::pthreadpool();
TORCH_INTERNAL_ASSERT(pool, "Invalid thread pool!");
pool->set_thread_count(nthreads);
#endif
#if AT_MKLDNN_ENABLED()
at::native::mkldnn::clear_computation_cache();
#endif
}
// Explicitly calling omp_get_max_threads() as the size of the parallel
// region might be different in the new thread;
// Use init_num_threads() during thread initialization to ensure
// consistent size of parallel region in different threads
int get_num_threads() {
#ifdef _OPENMP
at::internal::lazy_init_num_threads();
return omp_get_max_threads();
#else
return 1;
#endif
}
int get_thread_num() {
return this_thread_id;
}
namespace internal {
void set_thread_num(int id) {
this_thread_id = id;
}
}
bool in_parallel_region() {
#ifdef _OPENMP
return omp_in_parallel();
#else
return false;
#endif
}
void intraop_launch(std::function<void()> func) {
// execute inline in openmp case
func();
}
c10::intrusive_ptr<c10::ivalue::Future> intraop_launch_future(
std::function<void()> func) {
func();
auto future = c10::make_intrusive<c10::ivalue::Future>(NoneType::get());
future->markCompleted();
return future;
}
} // namespace at
#endif