-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathexperiment.py
567 lines (491 loc) · 23.4 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import pdb
import pathlib
import logging
import json
from time import time
import pickle
import sys
import datetime
from tqdm import tqdm
import numpy as np
import torch
import torch.optim as optim
from torch import autograd
from torch.optim.lr_scheduler import LambdaLR, StepLR, MultiStepLR
import horovod.torch as hvd
from tensorboardX import SummaryWriter
from util.metrics import Metrics
# from lib.metrics.metrics import Metrics
from util.timer import Timer
from util.dc import to_gpu
from util.metrics import reduce_metrics
from torch.cuda import amp
def get_optimizer(args, parameters):
name = args.optimizer.lower()
learning_rate = args.lr
optimizer = None
if name == "sgd":
optimizer = optim.SGD(parameters,
lr=learning_rate,
momentum=args.momentum)
elif name == "adam":
optimizer = optim.Adam(parameters, lr=learning_rate)
elif name == "rmsprop":
optimizer = optim.RMSprop(parameters, lr=learning_rate)
else:
raise NotImplementedError
logging.info("Using optimizer -> {}:{}".format(name, learning_rate))
logging.info(f"{optimizer}")
return optimizer
def get_scheduler(args, optimizer):
if args.lr_decay is None:
scheduler = None
else:
# lambda1 = lambda epoch: args.lr_decay ** epoch if args.lr_decay ** epoch > args.min_decay else args.min_decay
# scheduler = LambdaLR(optimizer, lr_lambda=lambda1)
# scheduler = StepLR(optimizer, step_size=32, gamma=.1)
scheduler = MultiStepLR(optimizer, milestones=[32], gamma=.1)
return scheduler
class Experiment:
def __init__(self, model, train_dataloader, validation_dataloader, test_dataloader,
output_dir, device, args):
self._args = args
self.main_process = self._args.main_process
# output dir
output_dir = pathlib.Path(output_dir)
self._checkpoint_dir = output_dir / 'params'
self._eval_dir = output_dir / 'eval'
if self.main_process:
self._writer = SummaryWriter(output_dir / 'log')
self._criterion = model.get_criterion()
self._get_metrics = model.get_metrics_func()
self._train_hooks = model.get_train_hooks(args, output_dir)
self._eval_hooks = model.get_eval_hooks(args, output_dir)
self._test_hooks = model.get_test_hooks(args, output_dir)
self._batch_size = args.batch_size
self._val_batch_size = args.batch_size
self._test_batch_size = args.batch_size
self._global_step = 0
self._global_epoch = 0
self._current_loss = 0
self._train_loss_history = []
self._val_loss_history = []
self._last_eval_time = None
self._device = device
self._timer = Timer()
self._n_train_batches = len(train_dataloader) if train_dataloader is not None else 0
self._n_val_batches = len(validation_dataloader) if validation_dataloader is not None else 0
self._n_test_batches = len(test_dataloader) if test_dataloader is not None else 0
self._train_dataloader = train_dataloader
self._validation_dataloader = validation_dataloader
self._test_dataloader = test_dataloader
self._metrics = Metrics(compare_fn=model.metrics_compare_fn)
self.scaler = amp.GradScaler()
if torch.cuda.is_available():
logging.info("Using GPU")
self._model = model.cuda()
else:
print('-------------------not distribution-------------')
self._model = model
self._optimizer = get_optimizer(args, model.parameters())
if self._args.is_dist:
self._optimizer = hvd.DistributedOptimizer(self._optimizer, named_parameters=self._model.named_parameters())
self._scheduler = get_scheduler(args, self._optimizer)
self.maybe_load()
hvd.broadcast_parameters(self._model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(self._optimizer, root_rank=0)
for state in self._optimizer.state.values():
for k, v in state.items():
if torch.is_tensor(v):
state[k] = v.cuda()
self._n_epochs = args.epochs
# plot windows in visdom
self._stuck_train_loss_epoch = 0
self._stuck_val_loss_epoch = 0
if args.main_process:
self.summary()
# TODO change hook code
def run_train_hooks(self, ex, results):
for hook in self._train_hooks:
if hook.trigger(self._global_step, self._global_epoch):
hook.run(self._global_step, self._global_epoch, ex, results)
def run_eval_hooks(self, eid, ex, results, unmerge_metrics):
for hook in self._eval_hooks:
if hook.trigger(eid, self._global_epoch):
hook.run(eid, self._global_epoch, ex, results, unmerge_metrics)
def run_test_hooks(self, eid, ex, results, write=False):
for hook in self._test_hooks:
if hook.trigger(eid, self._global_epoch):
hook.run(eid, self._global_epoch, ex, results, write=write)
def summary(self):
logging.info(
"----------------------------------------------------------------")
serialized_size = 0
for name, param in self._model.named_parameters():
byte_size = param.numel() * param.element_size()
serialized_size += byte_size
logging.info("Var: {} {}, type: {}, {}".format(
name, param.size(), param.dtype, byte_size))
logging.info("----")
logging.info(f"Serialized model size: "
f"{serialized_size / (1024 * 1024):.3f} MB")
logging.info("Total number of train samples: {} * {}".format(
self._n_train_batches, self._batch_size))
logging.info("Total number of val samples: {} * {}".format(
self._n_val_batches, self._val_batch_size))
logging.info("Total number of test samples: {} * {}".format(
self._n_test_batches, self._test_batch_size))
logging.info("Optimizer {}:{}".format(self._args.optimizer,
self._args.lr))
logging.info("LR decay {}".format(self._args.lr_decay))
logging.info("Reload {}:{}".format(
self._args.reload, self._metrics))
logging.info(
"----------------------------------------------------------------")
def maybe_load(self):
meta_info_file = self._checkpoint_dir / "meta.json"
if meta_info_file.exists() and self._args.reload != "none":
self.load_state_dict()
if self._global_step > 0 and self._n_train_batches > 0:
# make step align with dataset loader
self._global_step -= self._global_step % self._n_train_batches
def get_info(self):
return {'epoch': self._global_epoch, 'step': self._global_step}
def train_step(self, batch_features, batch_labels):
# torch.cuda.synchronize()
# st = time.time()
self._timer.tick("forward")
self._model.train()
self._optimizer.zero_grad()
with amp.autocast(enabled=self._args.mixed_precision):
network_results = self._model(batch_features)
loss_dict = self._criterion(batch_features,
batch_labels,
network_results)
backward_loss = loss_dict['total_loss']
# ns = get_run_time('loss', ns)
self._timer.update_from_tick("forward")
self._timer.tick("opt")
# ns = get_run_time('before backward', ns)
if self._args.mixed_precision:
self.scaler.scale(backward_loss).backward()
self._optimizer.synchronize()
# self._optimizer.step()
with self._optimizer.skip_synchronize():
self.scaler.step(self._optimizer)
self.scaler.update()
else:
backward_loss.backward()
self._optimizer.step()
# loss_val = loss.item()
for k, v in loss_dict.items():
if isinstance(v, torch.Tensor):
loss_dict[k] = v.item()
self._timer.update_from_tick("opt")
self._current_loss = loss_dict
self._global_step += 1
return network_results, loss_dict
def should_stop(self):
if (self._stuck_train_loss_epoch > self._args.early_stop_patience
and self._stuck_val_loss_epoch > self._args.early_stop_patience
and
self._metrics.stuck_step() > self._args.early_stop_patience):
logging.info("Stop. I have no more patience. {} {} {}".format(
self._stuck_train_loss_epoch, self._stuck_val_loss_epoch,
self._metrics.stuck_step()))
return True
else:
return False
def train_epoch(self):
losses = []
self._timer.create("train_step", "forward",
"opt", "dataloader", "metrics", "others")
self._timer.tick("dataloader", "train_step")
for bid, ex in enumerate(self._train_dataloader):
data = to_gpu(ex)
self._timer.update_from_tick("dataloader")
results, loss_dict = self.train_step(data, data)
self._timer.update_from_tick("train_step")
# print(f'-------------{bid}-{self._args.local_rank}-----------\n{loss_dict}')
# if bid > 100:
# sys.exit(0)
new_metric_dict = self._get_metrics(data, data, results, loss_dict)
new_metric_dict = reduce_metrics(new_metric_dict, self._args.world_size)
# print(f'------------metrics-{bid}-{self._args.local_rank}-----------\n{new_metric_dict}')
self._timer.tick("others")
if self._args.enable_hook:
self.run_train_hooks(ex, results)
if loss_dict is not None:
losses.append(loss_dict['total_loss'])
self._timer.tick("metrics")
self._timer.update_from_tick("metrics")
self._timer.update_from_tick("others")
if self.main_process:
print(f'-------------{bid}-------------')
if self._global_step % self._args.print_steps == 0:
train_timer = self._timer.get_avg("train_step")
forward_timer = self._timer.get_avg("forward")
opt_timer = self._timer.get_avg("opt")
data_timer = self._timer.get_avg("dataloader")
others_timer = self._timer.get_avg("others")
metrics_timer = self._timer.get_avg("metrics")
epoch_percent = (float(self._global_step %
self._n_train_batches) /
self._n_train_batches * 100)
logging.info(
f"{self._args.name} Epoch {self._global_epoch}"
f"/{self._args.epochs} "
f"Step:{self._global_step}/"
f"{epoch_percent:.2f}% "
f"loss: {loss_dict} \n"
f"{train_timer} {forward_timer} {opt_timer} "
f"{data_timer} {others_timer} {metrics_timer}")
for k, v in new_metric_dict.items():
logging.info(f'{k}: {v}')
if self._global_step % self._args.board_steps == 0:
self.write_metrics(new_metric_dict, prefix="train")
epoch_lr = self._scheduler.get_last_lr()
self._writer.add_scalar(
'lr/lr', epoch_lr, self._global_epoch)
if self._global_step % self._args.save_checkpoints_steps == 0:
self.save("latest")
if self._global_step % self._args.eval_steps == 0:
self.maybe_evaluate()
self._timer.tick("dataloader", "train_step")
# learning rate decay if assigned
if self._scheduler is not None:
self._scheduler.step()
loss_avg = np.mean(losses)
if len(self._train_loss_history) > 0:
not_update = (self._args.early_stop_min_delta >=
self._train_loss_history[-1])
self._stuck_train_loss_epoch += int(
loss_avg + not_update)
self._train_loss_history.append(loss_avg)
logging.info("Epoch {}: loss.avg: {} {}".format(self._global_epoch,
loss_avg, len(losses)))
self._global_epoch += 1
def train_eval(self):
n_epochs = self._n_epochs
# initial evaluation
if self._args.enable_initial_evaluate:
self.evaluate()
# training
self._model.train()
if n_epochs is not None and n_epochs > 0:
logging.info(
"Start training with total n_epochs = {}".format(n_epochs))
start_epoch = self._global_epoch
for e in range(start_epoch, n_epochs):
if self._args.enable_early_stop and self.should_stop():
logging.info("Early stop at {}".format(self._global_epoch))
break
if self._args.is_dist:
self._train_dataloader.sampler.set_epoch(int(e))
self.train_epoch()
else:
logging.error("epochs required.")
if self.main_process:
self._writer.close()
logging.info(
f"Train ends(Step {self._global_step}, "
f"Epoch {self._global_epoch}/ {self._args.epochs}). "
f"Best metrics: {json.dumps(self._metrics.best(), indent=2)}")
def maybe_evaluate(self):
self.evaluate()
def evaluate(self):
if self.main_process:
logging.info("Start evalation at step {}...".format(self._global_step))
self._model.eval()
self._timer.create("inference_step")
if self._args.is_dist:
self._validation_dataloader.sampler.set_epoch(int(self._global_epoch))
pbar = tqdm(enumerate(self._validation_dataloader),
total=self._n_val_batches)
losses = []
self._metrics.reset_acc_metrics()
with torch.no_grad():
# torch.cuda.synchronize()
for eid, ex in pbar:
# pdb.set_trace()
data = to_gpu(ex)
torch.cuda.synchronize()
# Some evaluate need labels
results = self._model(data)
torch.cuda.synchronize()
loss_dict = self._criterion(data,
data,
results,
mode='eval')
for k, v in loss_dict.items():
if isinstance(v, torch.Tensor):
loss_dict[k] = v.item()
losses.append(loss_dict['total_loss'])
# already averaged on one gpu batch size
new_metric_dict = self._get_metrics(data, data, results, loss_dict, mode='eval')
new_metric_dict = reduce_metrics(new_metric_dict, self._args.world_size)
self._metrics.update_acc_metrics(new_metric_dict, 1) # TODO update count
if self._args.enable_hook:
# self.run_eval_hooks(eid, ex, results, unmerge_metrics)
self.run_eval_hooks(eid, ex, results, eid == self._n_val_batches - 1)
pbar.update(1)
self._timer.update_from_start("inference_step")
# torch.cuda.synchronize()
loss_avg = np.mean(losses)
# self._writer.add_scalar('eval/loss', loss_avg, self._global_step)
if len(self._val_loss_history) > 0:
self._stuck_val_loss_epoch += int(
loss_avg +
self._args.early_stop_min_delta >= self._val_loss_history[-1])
self._val_loss_history.append(loss_avg)
if self.main_process:
last_metrics = self._metrics.latest()
old_best_metrics = self._metrics.best()
self._writer.add_scalar('eval/epoch', self._global_epoch, self._global_step)
self.write_metrics(self._metrics.avg_acc_metrics(), prefix="eval")
self._metrics.update(self._global_step, self._global_epoch,
self._metrics.avg_acc_metrics())
logging.info("Inference performance {}s ({} * {})".format(
self._timer.get_avg("inference_step"), self._val_batch_size,
self._n_val_batches))
logging.info(f"Step {self._global_step}: "
f"new_metrics {self._metrics.latest()}, "
f"last_metrics {last_metrics}")
eval_json = {
"step": self._global_step,
"metrics": self._metrics.latest()
}
eval_file_name = "{}".format(self._global_step).zfill(9)
eval_output_file = (
self._eval_dir /
"{}-{}-{}-{}.json".format(self._args.model, self._args.mode,
self._args.name, eval_file_name))
with eval_output_file.open('w') as f:
f.write(json.dumps(eval_json, indent=4))
# eval_output_file.open('w').write(json.dumps(eval_json, indent=4))
if self._metrics.best_is_updated():
logging.info("\n!!!!Get Best metrics!!!!\n")
logging.info("NEW:{}".format(self._metrics.best()))
logging.info("OLD:{}".format(old_best_metrics))
best_output_file = (self._eval_dir / "BEST-{}-{}-{}.json".format(
self._args.mode, self._args.model, self._args.name))
with best_output_file.open('w') as f:
f.write(json.dumps(eval_json, indent=4))
# best_output_file.open('w').write(json.dumps(eval_json, indent=4))
self.save(prefix="best")
self._model.train()
def infer(self):
"""
only work for 1 GPU
:return:
"""
logging.info("Start test at step {}...".format(self._global_step))
self._model.eval()
self._timer.create("test_step")
pbar = tqdm(enumerate(self._test_dataloader),
total=self._n_test_batches)
with torch.no_grad():
for eid, ex in pbar:
# pdb.set_trace()
torch.cuda.synchronize()
data = to_gpu(ex)
# Some evaluate need labels
results = self._model(data)
torch.cuda.synchronize()
# if self._args.enable_hook:
# self.run_test_hooks(eid, ex, results, eid == self._n_test_batches-1)
self.run_test_hooks(eid, ex, results, eid == self._n_test_batches - 1)
pbar.update(1)
self._timer.update_from_start("test_step")
# print(results)
logging.info("Test performance {}s ({} * {})".format(
self._timer.get_avg("test_step"), self._test_batch_size,
self._n_test_batches))
return None
def save(self, prefix="latest"):
checkpoint_dir = pathlib.Path(self._checkpoint_dir)
existed_paths = sorted(list(
checkpoint_dir.glob("**/{}-*.params".format(prefix))),
key=lambda path: path.stat().st_mtime)
for path in existed_paths[:-self._args.keep_checkpoint_max]:
logging.info("Try to remove {}".format(path))
path.unlink()
ckp_path = self._checkpoint_dir / "{}-{:09}.params".format(
prefix, self._global_step)
torch.save({
"model_state_dict": self._model.state_dict(),
"optimizer_state_dict": self._optimizer.state_dict(),
"lr_scheduler_state_dict": self._scheduler.state_dict() if self._scheduler is not None else None,
"epoch": self._global_epoch,
"step": self._global_step,
},
ckp_path)
logging.info("Save to {}".format(ckp_path))
current_time = datetime.datetime.today().strftime('%Y-%m-%d_%H_%M_%S')
meta_info_file = self._checkpoint_dir / "meta.json"
if meta_info_file.exists():
with meta_info_file.open() as f:
meta_info = json.load(f)
# meta_info = json.load(meta_info_file.open())
else:
meta_info = {}
meta_info["time"] = current_time
meta_info["latest_loss"] = self._current_loss
meta_info['best_model'] = self._metrics.best()
meta_info['latest_eval'] = self._metrics.latest()
meta_info["train_loss_history"] = self._train_loss_history
meta_info["val_loss_history"] = self._val_loss_history
meta_info["latest_step"] = self._global_step
meta_info["latest_epoch"] = self._global_epoch
with meta_info_file.open('w') as f:
f.write(json.dumps(meta_info, indent=4))
# meta_info_file.open('w').write(json.dumps(meta_info, indent=4))
def load_state_dict(self):
"""
load params to model if exists.
"""
meta_info_file = self._checkpoint_dir / "meta.json"
with meta_info_file.open() as f:
meta_info = json.load(f)
if self._args.reload == 'latest':
filename = "latest-{:09}".format(meta_info['latest_step'])
self._global_step = meta_info['latest_step']
self._global_epoch = meta_info['latest_epoch']
else:
filename = "best-{:09}".format(meta_info['best_model']['step'])
self._global_step = meta_info['best_model']['step']
self._global_epoch = meta_info['best_model']['epoch']
self._metrics.restore_from_meta(meta_info)
logging.info("=============================================")
logging.info(
f"Loading exist param from {filename}"
f"(S{self._global_step}/E{self._global_epoch})")
logging.info("Loaded metrics {}".format(str(self._metrics)))
logging.info("=============================================")
filename = self._checkpoint_dir / "{}.params".format(filename)
if self._args.is_dist:
saved_data = torch.load(filename, map_location={'cuda:0': f'cuda:{self._args.local_rank}'}) # TODO, check map_location
else:
saved_data = torch.load(filename)
if "model_state_dict" not in saved_data:
self._model.load_state_dict(saved_data)
else:
self._model.load_state_dict(saved_data["model_state_dict"])
self._optimizer.load_state_dict(
saved_data["optimizer_state_dict"])
if self._scheduler is not None:
self._scheduler.load_state_dict(
saved_data["lr_scheduler_state_dict"])
self._global_epoch = saved_data["epoch"]
self._global_step = saved_data["step"]
def write_metrics(self, raw_metrics, prefix):
def iter_dict(metrics, prefix):
for key in metrics:
if (isinstance(metrics[key], (int, float))
or np.isscalar(metrics[key])):
self._writer.add_scalar('{}/{}'.format(prefix, key),
metrics[key], self._global_step)
elif metrics[key] is not None:
iter_dict(metrics[key], prefix="{}/{}".format(prefix, key))
if raw_metrics is not None:
iter_dict(raw_metrics, prefix)