forked from rarten/ooz
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcompr_tans.cpp
510 lines (445 loc) · 16 KB
/
compr_tans.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
// This file is not GPL. It may be used for educational purposes only.
#include "stdafx.h"
#include "compr_entropy.h"
#include "compr_util.h"
#include "qsort.h"
#include <algorithm>
#include <limits.h>
float GetTime_tANS(int platforms, int src_size, int used_syms, int tans_table_size) {
return CombineCostComponents(
platforms,
642.078f + src_size * 3.175f + used_syms * 52.016f + tans_table_size * 1.895f,
1073.963f + src_size * 2.963f + used_syms * 77.065f + tans_table_size * 1.695f,
1313.768f + src_size * 3.951f + used_syms * 78.930f + tans_table_size * 4.139f,
705.924f + src_size * 2.324f + used_syms * 49.328f + tans_table_size * 1.423f);
}
static uint GetBitsForArraysOfRice(const uint *arr, int arrsize, int k) {
uint result = 0;
for (int i = 0; i < arrsize; i++) {
if (arr[i])
result += arr[i] * (k + 1 + 2 * BSR((i >> k) + 1));
}
return result;
}
static void Tans_EncodeTable(BitWriter64<1> *bits_in, int L_bits, uint *lookup, int histo_size, int used_symbols) {
BitWriter64<1> bits = *bits_in;
if (used_symbols > 7) {
bits.WriteNoFlush(1, 1);
uint arr_z[128] = { 0 };
int ranges[257], *range_cur = ranges;
int arr_x[256];
int arr_y[32];
uint8 arr_w[256];
uint8 sr_rice[256];
uint8 sr_bits[256];
uint8 sr_bitcount[256];
int pos = 0;
while (pos < histo_size && lookup[pos] == 0)
pos++;
*range_cur++ = pos;
int average = 6, v, used_syms = 0, arr_x_count = 0, arr_y_count = 0;
while (pos < histo_size) {
int pos_start = pos;
while (pos < histo_size && (v = lookup[pos]) != 0) {
v--;
int average_div4 = average >> 2;
int limit = 2 * average_div4;
int u = v > limit ? v : 2 * (v - average_div4) ^ ((v - average_div4) >> 31);
arr_x[arr_x_count++] = u;
if (u >= 0x80) {
arr_y[arr_y_count++] = u;
} else {
arr_z[u]++;
}
if (v < limit)
limit = v;
pos++;
used_syms++;
average += limit - average_div4;
}
*range_cur++ = pos - pos_start;
pos_start = pos;
while (pos < histo_size && lookup[pos] == 0)
pos++;
*range_cur++ = pos - pos_start;
}
range_cur[-1] += 256 - pos;
int best_score = INT_MAX;
int Q = 0;
for (int tq = 0; tq < 8; tq++) {
int score = GetBitsForArraysOfRice(arr_z, 128, tq);
for (int i = 0; i < arr_y_count; i++)
score += tq + 2 * BSR((arr_y[i] >> tq) + 1) + 1;
if (score < best_score) {
best_score = score;
Q = tq;
}
}
int num_symrange = EncodeSymRange(sr_rice, sr_bits, sr_bitcount, used_syms, ranges, range_cur - ranges);
bits.WriteNoFlush((used_syms - 1) + (Q << 8), 11);
BitWriter64<1> bitst = bits;
WriteNumSymRange(&bitst, num_symrange, used_syms);
for (int i = 0; i < arr_x_count; i++) {
uint x = arr_x[i] + (1 << Q);
int nb = BSR(x >> Q);
arr_w[i] = nb;
arr_x[i] = x & ((1 << (Q + nb)) - 1);
}
WriteManyRiceCodes(&bitst, arr_w, arr_x_count);
WriteManyRiceCodes(&bitst, sr_rice, num_symrange);
WriteSymRangeLowBits(&bitst, sr_bits, sr_bitcount, num_symrange);
bits = bitst;
for (int i = 0; i < arr_x_count; i++) {
if (Q + arr_w[i] != 0)
bits.Write(arr_x[i], Q + arr_w[i]);
}
} else {
bits.WriteNoFlush(0, 1);
bits.WriteNoFlush(used_symbols - 2, 3);
uint32 sympos[8], *sympos_end = sympos;
for (int i = 0; i < histo_size; i++) {
if (lookup[i])
*sympos_end++ = i | (lookup[i] << 16);
}
SimpleSort(sympos, sympos_end);
int delta_bits = 1;
for (int i = 0, pos = 0; i < used_symbols - 1; i++) {
int v = (sympos[i] >> 16);
int nb = v - pos ? BSR(v - pos) + 1 : 0;
delta_bits = std::max(delta_bits, nb);
pos = v;
}
bits.WriteNoFlush(delta_bits, BSR(L_bits) + 1);
for (int i = 0, pos = 0; i < used_symbols - 1; i++) {
int v = (sympos[i] >> 16);
bits.Write((v - pos) + ((uint8)sympos[i] << delta_bits), delta_bits + 8);
pos = v;
}
bits.Write((uint8)sympos[used_symbols - 1], 8);
}
*bits_in = bits;
}
struct TansEntry {
uint16 *next_state;
uint16 thres;
uint8 bits;
};
static float Tans_GetLogFactorUp(int value) {
static const float kTansFactorUpTable[32] = {
// ", ".join(['%.6f' % (math.log(1.0 + 1.0 / value)) for value in xrange(1, 32)])
0.000000f, 0.693147f, 0.405465f, 0.287682f, 0.223144f, 0.182322f, 0.154151f, 0.133531f,
0.117783f, 0.105361f, 0.095310f, 0.087011f, 0.080043f, 0.074108f, 0.068993f, 0.064539f,
0.060625f, 0.057158f, 0.054067f, 0.051293f, 0.048790f, 0.046520f, 0.044452f, 0.042560f,
0.040822f, 0.039221f, 0.037740f, 0.036368f, 0.035091f, 0.033902f, 0.032790f, 0.031749f
};
if (value >= 32)
return (1.0f / value) - (1.0f / value) * (1.0f / value) * 0.5f;
else
return kTansFactorUpTable[value];
}
static float Tans_GetLogFactorDown(int value) {
static const float kTansFactorDownTable[32] = {
// ", ".join(['%.6f' % (math.log(1.0 - 1.0 / value)) for value in xrange(2, 32)])
0.000000f, 0.000000f, -0.693147f, -0.405465f, -0.287682f, -0.223144f, -0.182322f, -0.154151f,
-0.133531f, -0.117783f, -0.105361f, -0.095310f, -0.087011f, -0.080043f, -0.074108f, -0.068993f,
-0.064539f, -0.060625f, -0.057158f, -0.054067f, -0.051293f, -0.048790f, -0.046520f, -0.044452f,
-0.042560f, -0.040822f, -0.039221f, -0.037740f, -0.036368f, -0.035091f, -0.033902f, -0.032790f
};
if (value >= 32)
return -(1.0f / value) - (1.0f / value) * (1.0f / value) * 0.5f;
else
return kTansFactorDownTable[value];
}
static uint DoubleToUintRoundPow2(double v) {
uint u = (uint)v;
return u + (v * v > (u * (u + 1)));
}
static int Tans_NormalizeCounts(uint *lookup, uint L, const HistoU8 &histo, int histo_sum, int num_syms) {
int syms_used = 0;
double multiplier = (double)L / (double)histo_sum;
uint weight_sum = 0;
for (int i = 0; i < num_syms; i++) {
uint h = histo.count[i], u = 0;
if (h) {
u = DoubleToUintRoundPow2(h * multiplier);
weight_sum += u;
syms_used += 1;
}
lookup[i] = u;
}
if (weight_sum == L)
return syms_used;
struct Entry {
int index;
float score;
bool operator<(const Entry &e) { return score < e.score; }
};
Entry heap[256], *heapcur = heap;
int diff = L - weight_sum;
if (diff < 0) {
for (int i = 0; i < num_syms; i++) {
if (lookup[i] > 1) {
heapcur->index = i;
heapcur->score = histo.count[i] * Tans_GetLogFactorDown(lookup[i]);
heapcur++;
}
}
} else {
for (int i = 0; i < num_syms; i++) {
if (histo.count[i]) {
heapcur->index = i;
heapcur->score = histo.count[i] * Tans_GetLogFactorUp(lookup[i]);
heapcur++;
}
}
}
MyMakeHeap(heap, heapcur);
if (diff < 0) {
do {
assert(heap != heapcur);
uint index = heap->index;
MyPopHeap(heap, heapcur--);
if (--lookup[index] > 1) {
heapcur->index = index;
heapcur->score = histo.count[index] * Tans_GetLogFactorDown(lookup[index]);
MyPushHeap(heap, ++heapcur);
}
} while (++diff);
} else {
do {
assert(heap != heapcur);
uint index = heap->index;
MyPopHeap(heap, heapcur--);
lookup[index]++;
heapcur->index = index;
heapcur->score = histo.count[index] * Tans_GetLogFactorUp(lookup[index]);
MyPushHeap(heap, ++heapcur);
} while (--diff);
}
return syms_used;
}
static void Tans_InitTable(TansEntry *te, uint16 *te_data, uint *weights, int weights_size, int L_bits) {
uint L = 1 << L_bits;
uint ones = 0;
for (int i = 0; i < weights_size; i++)
ones += weights[i] == 1;
uint slots_left_to_alloc = L - ones;
uint sa = slots_left_to_alloc >> 2;
uint pointers[4];
pointers[0] = 0;
uint sb = sa + ((slots_left_to_alloc & 3) > 0);
pointers[1] = sb;
sb += sa + ((slots_left_to_alloc & 3) > 1);
pointers[2] = sb;
sb += sa + ((slots_left_to_alloc & 3) > 2);
pointers[3] = sb;
uint16 *ones_ptr = te_data + slots_left_to_alloc;
int weights_sum = 0;
for (int i = 0; i < weights_size; i++, te++) {
uint w = weights[i];
if (w) {
if (w == 1) {
te->bits = L_bits;
te->thres = 2 * L;
te->next_state = ones_ptr - 1;
*ones_ptr = L + (ones_ptr - te_data);
ones_ptr++;
} else {
int nb = BSR(w - 1) + 1;
te->bits = L_bits - nb;
te->thres = 2 * w << (L_bits - nb);
uint16 *other_ptr = te_data + weights_sum;
te->next_state = other_ptr - w;
for (int j = 0; j < 4; j++) {
int p = pointers[j];
int Y = (w + ((weights_sum - j - 1) & 3)) >> 2;
while (Y--)
*other_ptr++ = p++ + L;
pointers[j] = p;
}
weights_sum += w;
}
} else {
te->next_state = NULL;
}
}
}
static inline void Tans_GetEncodedBitCount(TansEntry *te, const uint8 *src, int src_size, int L_bits, uint *forward_bits_ptr, uint *backward_bits_ptr) {
uint L = 1 << L_bits;
const uint8 *src_end = src + src_size - 5;
uint state_0 = src_end[0] | L;
uint state_1 = src_end[1] | L;
uint state_2 = src_end[2] | L;
uint state_3 = src_end[3] | L;
uint state_4 = src_end[4] | L;
uint forward_bits = 0, backward_bits = 0;
uint nb;
int rounds = (src_size - 5) / 10;
TansEntry *t;
src_end--;
#define TANS_COUNT_BITS(state, counter) do { \
t = &te[*src_end--]; \
nb = t->bits + (state >= t->thres); \
counter += nb; \
state = t->next_state[state >> nb]; \
} while(0)
switch ((src_size - 5) % 10) {
case 9: TANS_COUNT_BITS(state_3, forward_bits);
case 8: TANS_COUNT_BITS(state_2, forward_bits);
case 7: TANS_COUNT_BITS(state_1, forward_bits);
case 6: TANS_COUNT_BITS(state_0, forward_bits);
case 5: TANS_COUNT_BITS(state_4, backward_bits);
case 4: TANS_COUNT_BITS(state_3, backward_bits);
case 3: TANS_COUNT_BITS(state_2, backward_bits);
case 2: TANS_COUNT_BITS(state_1, backward_bits);
case 1: TANS_COUNT_BITS(state_0, backward_bits);
}
while (rounds--) {
TANS_COUNT_BITS(state_4, forward_bits);
TANS_COUNT_BITS(state_3, forward_bits);
TANS_COUNT_BITS(state_2, forward_bits);
TANS_COUNT_BITS(state_1, forward_bits);
TANS_COUNT_BITS(state_0, forward_bits);
TANS_COUNT_BITS(state_4, backward_bits);
TANS_COUNT_BITS(state_3, backward_bits);
TANS_COUNT_BITS(state_2, backward_bits);
TANS_COUNT_BITS(state_1, backward_bits);
TANS_COUNT_BITS(state_0, backward_bits);
}
#undef TANS_COUNT_BITS
*forward_bits_ptr = forward_bits + 2 * L_bits;
*backward_bits_ptr = backward_bits + 3 * L_bits;
}
static uint8 *Tans_EncodeBytes(uint8 *dst, uint8 *dst_end, TansEntry *te, const uint8 *src, int src_size, int L_bits, int forward_bits_pad, int backward_bits_pad) {
BitWriter64<1> forward_bits(dst);
BitWriter64<-1> backward_bits(dst_end);
if (forward_bits_pad & 7)
forward_bits.WriteNoFlush(0, 8 - (forward_bits_pad & 7));
if (backward_bits_pad & 7)
backward_bits.WriteNoFlush(0, 8 - (backward_bits_pad & 7));
uint L = 1 << L_bits;
const uint8 *src_end = src + src_size - 5;
uint state_0 = src_end[0] | L;
uint state_1 = src_end[1] | L;
uint state_2 = src_end[2] | L;
uint state_3 = src_end[3] | L;
uint state_4 = src_end[4] | L;
uint nb;
int rounds = (src_size - 5) / 10;
TansEntry *t;
src_end--;
#define TANS_ENCODE(state, bitwr) do { \
t = &te[*src_end--]; \
nb = t->bits + (state >= t->thres); \
bitwr.WriteNoFlush(state & ((1 << nb) - 1), nb); \
state = t->next_state[state >> nb]; \
} while(0)
switch ((src_size - 5) % 10) {
case 9: TANS_ENCODE(state_3, forward_bits);
case 8: TANS_ENCODE(state_2, forward_bits);
case 7: TANS_ENCODE(state_1, forward_bits);
case 6: TANS_ENCODE(state_0, forward_bits);
case 5: TANS_ENCODE(state_4, backward_bits);
case 4: TANS_ENCODE(state_3, backward_bits);
case 3: TANS_ENCODE(state_2, backward_bits);
case 2: TANS_ENCODE(state_1, backward_bits);
case 1: TANS_ENCODE(state_0, backward_bits);
backward_bits.Flush();
forward_bits.Flush();
}
while (rounds--) {
TANS_ENCODE(state_4, forward_bits);
TANS_ENCODE(state_3, forward_bits);
TANS_ENCODE(state_2, forward_bits);
TANS_ENCODE(state_1, forward_bits);
TANS_ENCODE(state_0, forward_bits);
TANS_ENCODE(state_4, backward_bits);
TANS_ENCODE(state_3, backward_bits);
TANS_ENCODE(state_2, backward_bits);
TANS_ENCODE(state_1, backward_bits);
TANS_ENCODE(state_0, backward_bits);
backward_bits.Flush();
forward_bits.Flush();
}
backward_bits.WriteNoFlush(state_4 & (L - 1), L_bits);
backward_bits.WriteNoFlush(state_2 & (L - 1), L_bits);
backward_bits.WriteNoFlush(state_0 & (L - 1), L_bits);
forward_bits.WriteNoFlush(state_3 & (L - 1), L_bits);
forward_bits.WriteNoFlush(state_1 & (L - 1), L_bits);
backward_bits.Flush();
forward_bits.Flush();
#undef TANS_ENCODE
assert(backward_bits.pos_ == 63);
assert(forward_bits.pos_ == 63);
// It will be decoded in the backwards direction,
// so swap the order of the two buffers.
// We've written it as FORWARD....BACKWARD but it needs
// to be saved as BACKWARD....FORWARD.
size_t forward_bytes = forward_bits.ptr_ - dst;
size_t backward_bytes = dst_end - backward_bits.ptr_;
uint8 *temp = new uint8[backward_bytes];
memcpy(temp, backward_bits.ptr_, backward_bytes);
memmove(dst + backward_bytes, dst, forward_bytes);
memcpy(dst, temp, backward_bytes);
delete[] temp;
return dst + forward_bytes + backward_bytes;
}
int EncodeArrayU8_tANS(uint8 *dst, uint8 *dst_end, const uint8 *src, int src_size, const HistoU8 &histo, float speed_tradeoff, int platforms, float *cost_ptr) {
if (src_size < 32)
return -1;
const uint8 *src_end = src + src_size - 5;
HistoU8 *histo_mod = (HistoU8*)&histo;
histo_mod->count[src_end[0]]--;
histo_mod->count[src_end[1]]--;
histo_mod->count[src_end[2]]--;
histo_mod->count[src_end[3]]--;
histo_mod->count[src_end[4]]--;
int L_bits = std::max(std::min(ilog2round(src_size - 5) - 2, 11), 8);
int weights_size = 256;
uint weights[256];
while (weights_size && histo.count[weights_size - 1] == 0)
weights_size--;
int used_symbols = Tans_NormalizeCounts(weights, 1 << L_bits, histo, src_size - 5, weights_size);
histo_mod->count[src_end[0]]++;
histo_mod->count[src_end[1]]++;
histo_mod->count[src_end[2]]++;
histo_mod->count[src_end[3]]++;
histo_mod->count[src_end[4]]++;
if (used_symbols <= 1)
return -1;
float cost = GetTime_tANS(platforms, src_size - 5, used_symbols, 1 << L_bits) * speed_tradeoff + 5;
int cost_left = (*cost_ptr - cost);
if (cost_left < 4)
return -1;
memset(&weights[weights_size], 0, sizeof(uint) * (256 - weights_size));
uint8 table[512];
BitWriter64<1> bits(table);
bits.WriteNoFlush(L_bits - 8, 3);
Tans_EncodeTable(&bits, L_bits, weights, weights_size, used_symbols);
int table_size = bits.GetFinalPtr() - table;
// Perform an inexact computation of the optimal value we may achieve to
// see if we can fit within the limit.
uint64 approx_bits_frac = 0;
for (int i = 0; i < weights_size; i++) {
if (weights[i])
approx_bits_frac += (uint64)kLog2LookupTable[weights[i] << (13 - L_bits)] * histo.count[i];
}
if (table_size + (int)(approx_bits_frac >> 16) >= cost_left)
return -1;
int q = 0;
for (int i = 0; i < weights_size; i++)
q += weights[i];
TansEntry te[256];
uint16 te_data[1 << 11];
Tans_InitTable(te, te_data, weights, weights_size, L_bits);
uint forward_bits, backward_bits;
Tans_GetEncodedBitCount(te, src, src_size, L_bits, &forward_bits, &backward_bits);
int total_size = table_size + BITSUP(forward_bits) + BITSUP(backward_bits);
if (total_size >= cost_left || total_size + cost >= *cost_ptr)
return -1;
if (total_size + 8 > dst_end - dst)
return -1;
*cost_ptr = cost + total_size;
memcpy(dst, table, table_size);
return Tans_EncodeBytes(dst + table_size, dst_end, te, src, src_size, L_bits, forward_bits, backward_bits) - dst;
}