forked from influxdata/influxdb-client-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrite_api.py
587 lines (466 loc) · 24.6 KB
/
write_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
"""Collect and write time series data to InfluxDB Cloud or InfluxDB OSS."""
# coding: utf-8
import logging
import os
import warnings
from collections import defaultdict
from datetime import timedelta
from enum import Enum
from random import random
from time import sleep
from typing import Union, Any, Iterable, NamedTuple
import reactivex as rx
from reactivex import operators as ops, Observable
from reactivex.scheduler import ThreadPoolScheduler
from reactivex.subject import Subject
from influxdb_client import WritePrecision
from influxdb_client.client._base import _BaseWriteApi, _HAS_DATACLASS
from influxdb_client.client.util.helpers import get_org_query_param
from influxdb_client.client.write.dataframe_serializer import DataframeSerializer
from influxdb_client.client.write.point import Point, DEFAULT_WRITE_PRECISION
from influxdb_client.client.write.retry import WritesRetry
from influxdb_client.rest import _UTF_8_encoding
logger = logging.getLogger('influxdb_client.client.write_api')
if _HAS_DATACLASS:
import dataclasses
from dataclasses import dataclass
class WriteType(Enum):
"""Configuration which type of writes will client use."""
batching = 1
asynchronous = 2
synchronous = 3
class WriteOptions(object):
"""Write configuration."""
def __init__(self, write_type: WriteType = WriteType.batching,
batch_size=1_000, flush_interval=1_000,
jitter_interval=0,
retry_interval=5_000,
max_retries=5,
max_retry_delay=125_000,
max_retry_time=180_000,
exponential_base=2,
max_close_wait=300_000,
write_scheduler=ThreadPoolScheduler(max_workers=1)) -> None:
"""
Create write api configuration.
:param write_type: methods of write (batching, asynchronous, synchronous)
:param batch_size: the number of data point to collect in batch
:param flush_interval: flush data at least in this interval (milliseconds)
:param jitter_interval: this is primarily to avoid large write spikes for users running a large number of
client instances ie, a jitter of 5s and flush duration 10s means flushes will happen every 10-15s
(milliseconds)
:param retry_interval: the time to wait before retry unsuccessful write (milliseconds)
:param max_retries: the number of max retries when write fails, 0 means retry is disabled
:param max_retry_delay: the maximum delay between each retry attempt in milliseconds
:param max_retry_time: total timeout for all retry attempts in milliseconds, if 0 retry is disabled
:param exponential_base: base for the exponential retry delay
:parama max_close_wait: the maximum time to wait for writes to be flushed if close() is called
:param write_scheduler:
"""
self.write_type = write_type
self.batch_size = batch_size
self.flush_interval = flush_interval
self.jitter_interval = jitter_interval
self.retry_interval = retry_interval
self.max_retries = max_retries
self.max_retry_delay = max_retry_delay
self.max_retry_time = max_retry_time
self.exponential_base = exponential_base
self.write_scheduler = write_scheduler
self.max_close_wait = max_close_wait
def to_retry_strategy(self, **kwargs):
"""
Create a Retry strategy from write options.
:key retry_callback: The callable ``callback`` to run after retryable error occurred.
The callable must accept one argument:
- `Exception`: an retryable error
"""
return WritesRetry(
total=self.max_retries,
retry_interval=self.retry_interval / 1_000,
jitter_interval=self.jitter_interval / 1_000,
max_retry_delay=self.max_retry_delay / 1_000,
max_retry_time=self.max_retry_time / 1_000,
exponential_base=self.exponential_base,
retry_callback=kwargs.get("retry_callback", None),
allowed_methods=["POST"])
def __getstate__(self):
"""Return a dict of attributes that you want to pickle."""
state = self.__dict__.copy()
# Remove write scheduler
del state['write_scheduler']
return state
def __setstate__(self, state):
"""Set your object with the provided dict."""
self.__dict__.update(state)
# Init default write Scheduler
self.write_scheduler = ThreadPoolScheduler(max_workers=1)
SYNCHRONOUS = WriteOptions(write_type=WriteType.synchronous)
ASYNCHRONOUS = WriteOptions(write_type=WriteType.asynchronous)
class PointSettings(object):
"""Settings to store default tags."""
def __init__(self, **default_tags) -> None:
"""
Create point settings for write api.
:param default_tags: Default tags which will be added to each point written by api.
"""
self.defaultTags = dict()
for key, val in default_tags.items():
self.add_default_tag(key, val)
@staticmethod
def _get_value(value):
if value.startswith("${env."):
return os.environ.get(value[6:-1])
return value
def add_default_tag(self, key, value) -> None:
"""Add new default tag with key and value."""
self.defaultTags[key] = self._get_value(value)
class _BatchItemKey(object):
def __init__(self, bucket, org, precision=DEFAULT_WRITE_PRECISION) -> None:
self.bucket = bucket
self.org = org
self.precision = precision
pass
def __hash__(self) -> int:
return hash((self.bucket, self.org, self.precision))
def __eq__(self, o: object) -> bool:
return isinstance(o, self.__class__) \
and self.bucket == o.bucket and self.org == o.org and self.precision == o.precision
def __str__(self) -> str:
return '_BatchItemKey[bucket:\'{}\', org:\'{}\', precision:\'{}\']' \
.format(str(self.bucket), str(self.org), str(self.precision))
class _BatchItem(object):
def __init__(self, key: _BatchItemKey, data, size=1) -> None:
self.key = key
self.data = data
self.size = size
pass
def to_key_tuple(self) -> (str, str, str):
return self.key.bucket, self.key.org, self.key.precision
def __str__(self) -> str:
return '_BatchItem[key:\'{}\', size: \'{}\']' \
.format(str(self.key), str(self.size))
class _BatchResponse(object):
def __init__(self, data: _BatchItem, exception: Exception = None):
self.data = data
self.exception = exception
pass
def __str__(self) -> str:
return '_BatchResponse[status:\'{}\', \'{}\']' \
.format("failed" if self.exception else "success", str(self.data))
def _body_reduce(batch_items):
return b'\n'.join(map(lambda batch_item: batch_item.data, batch_items))
class WriteApi(_BaseWriteApi):
"""
Implementation for '/api/v2/write' endpoint.
Example:
.. code-block:: python
from influxdb_client import InfluxDBClient
from influxdb_client.client.write_api import SYNCHRONOUS
# Initialize SYNCHRONOUS instance of WriteApi
with InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org") as client:
write_api = client.write_api(write_options=SYNCHRONOUS)
"""
def __init__(self,
influxdb_client,
write_options: WriteOptions = WriteOptions(),
point_settings: PointSettings = PointSettings(),
**kwargs) -> None:
"""
Initialize defaults.
:param influxdb_client: with default settings (organization)
:param write_options: write api configuration
:param point_settings: settings to store default tags.
:key success_callback: The callable ``callback`` to run after successfully writen a batch.
The callable must accept two arguments:
- `Tuple`: ``(bucket, organization, precision)``
- `str`: written data
**[batching mode]**
:key error_callback: The callable ``callback`` to run after unsuccessfully writen a batch.
The callable must accept three arguments:
- `Tuple`: ``(bucket, organization, precision)``
- `str`: written data
- `Exception`: an occurred error
**[batching mode]**
:key retry_callback: The callable ``callback`` to run after retryable error occurred.
The callable must accept three arguments:
- `Tuple`: ``(bucket, organization, precision)``
- `str`: written data
- `Exception`: an retryable error
**[batching mode]**
"""
super().__init__(influxdb_client=influxdb_client, point_settings=point_settings)
self._write_options = write_options
self._success_callback = kwargs.get('success_callback', None)
self._error_callback = kwargs.get('error_callback', None)
self._retry_callback = kwargs.get('retry_callback', None)
self._window_scheduler = None
if self._write_options.write_type is WriteType.batching:
# Define Subject that listen incoming data and produces writes into InfluxDB
self._subject = Subject()
self._window_scheduler = ThreadPoolScheduler(1)
self._disposable = self._subject.pipe(
# Split incoming data to windows by batch_size or flush_interval
ops.window_with_time_or_count(count=write_options.batch_size,
timespan=timedelta(milliseconds=write_options.flush_interval),
scheduler=self._window_scheduler),
# Map window into groups defined by 'organization', 'bucket' and 'precision'
ops.flat_map(lambda window: window.pipe(
# Group window by 'organization', 'bucket' and 'precision'
ops.group_by(lambda batch_item: batch_item.key),
# Create batch (concatenation line protocols by \n)
ops.map(lambda group: group.pipe(
ops.to_iterable(),
ops.map(lambda xs: _BatchItem(key=group.key, data=_body_reduce(xs), size=len(xs))))),
ops.merge_all())),
# Write data into InfluxDB (possibility to retry if its fail)
ops.filter(lambda batch: batch.size > 0),
ops.map(mapper=lambda batch: self._to_response(data=batch, delay=self._jitter_delay())),
ops.merge_all()) \
.subscribe(self._on_next, self._on_error, self._on_complete)
else:
self._subject = None
self._disposable = None
if self._write_options.write_type is WriteType.asynchronous:
message = """The 'WriteType.asynchronous' is deprecated and will be removed in future major version.
You can use native asynchronous version of the client:
- https://influxdb-client.readthedocs.io/en/stable/usage.html#how-to-use-asyncio
"""
warnings.warn(message, DeprecationWarning)
def write(self, bucket: str, org: str = None,
record: Union[
str, Iterable['str'], Point, Iterable['Point'], dict, Iterable['dict'], bytes, Iterable['bytes'],
Observable, NamedTuple, Iterable['NamedTuple'], 'dataclass', Iterable['dataclass']
] = None,
write_precision: WritePrecision = DEFAULT_WRITE_PRECISION, **kwargs) -> Any:
"""
Write time-series data into InfluxDB.
:param str bucket: specifies the destination bucket for writes (required)
:param str, Organization org: specifies the destination organization for writes;
take the ID, Name or Organization.
If not specified the default value from ``InfluxDBClient.org`` is used.
:param WritePrecision write_precision: specifies the precision for the unix timestamps within
the body line-protocol. The precision specified on a Point has precedes
and is use for write.
:param record: Point, Line Protocol, Dictionary, NamedTuple, Data Classes, Pandas DataFrame or
RxPY Observable to write
:key data_frame_measurement_name: name of measurement for writing Pandas DataFrame - ``DataFrame``
:key data_frame_tag_columns: list of DataFrame columns which are tags,
rest columns will be fields - ``DataFrame``
:key data_frame_timestamp_column: name of DataFrame column which contains a timestamp. The column can be defined as a :class:`~str` value
formatted as `2018-10-26`, `2018-10-26 12:00`, `2018-10-26 12:00:00-05:00`
or other formats and types supported by `pandas.to_datetime <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime>`_ - ``DataFrame``
:key data_frame_timestamp_timezone: name of the timezone which is used for timestamp column - ``DataFrame``
:key record_measurement_key: key of record with specified measurement -
``dictionary``, ``NamedTuple``, ``dataclass``
:key record_measurement_name: static measurement name - ``dictionary``, ``NamedTuple``, ``dataclass``
:key record_time_key: key of record with specified timestamp - ``dictionary``, ``NamedTuple``, ``dataclass``
:key record_tag_keys: list of record keys to use as a tag - ``dictionary``, ``NamedTuple``, ``dataclass``
:key record_field_keys: list of record keys to use as a field - ``dictionary``, ``NamedTuple``, ``dataclass``
Example:
.. code-block:: python
# Record as Line Protocol
write_api.write("my-bucket", "my-org", "h2o_feet,location=us-west level=125i 1")
# Record as Dictionary
dictionary = {
"measurement": "h2o_feet",
"tags": {"location": "us-west"},
"fields": {"level": 125},
"time": 1
}
write_api.write("my-bucket", "my-org", dictionary)
# Record as Point
from influxdb_client import Point
point = Point("h2o_feet").tag("location", "us-west").field("level", 125).time(1)
write_api.write("my-bucket", "my-org", point)
DataFrame:
If the ``data_frame_timestamp_column`` is not specified the index of `Pandas DataFrame <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
is used as a ``timestamp`` for written data. The index can be `PeriodIndex <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.PeriodIndex.html#pandas.PeriodIndex>`_
or its must be transformable to ``datetime`` by
`pandas.to_datetime <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime>`_.
If you would like to transform a column to ``PeriodIndex``, you can use something like:
.. code-block:: python
import pandas as pd
# DataFrame
data_frame = ...
# Set column as Index
data_frame.set_index('column_name', inplace=True)
# Transform index to PeriodIndex
data_frame.index = pd.to_datetime(data_frame.index, unit='s')
""" # noqa: E501
org = get_org_query_param(org=org, client=self._influxdb_client)
self._append_default_tags(record)
if self._write_options.write_type is WriteType.batching:
return self._write_batching(bucket, org, record,
write_precision, **kwargs)
payloads = defaultdict(list)
self._serialize(record, write_precision, payloads, **kwargs)
_async_req = True if self._write_options.write_type == WriteType.asynchronous else False
def write_payload(payload):
final_string = b'\n'.join(payload[1])
return self._post_write(_async_req, bucket, org, final_string, payload[0])
results = list(map(write_payload, payloads.items()))
if not _async_req:
return None
elif len(results) == 1:
return results[0]
return results
def flush(self):
"""Flush data."""
# TODO
pass
def close(self):
"""Flush data and dispose a batching buffer."""
self.__del__()
def __enter__(self):
"""
Enter the runtime context related to this object.
It will bind this method’s return value to the target(s)
specified in the `as` clause of the statement.
return: self instance
"""
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Exit the runtime context related to this object and close the WriteApi."""
self.close()
def __del__(self):
"""Close WriteApi."""
if self._subject:
self._subject.on_completed()
self._subject.dispose()
self._subject = None
"""
We impose a maximum wait time to ensure that we do not cause a deadlock if the
background thread has exited abnormally
Each iteration waits 100ms, but sleep expects the unit to be seconds so convert
the maximum wait time to seconds.
We keep a counter of how long we've waited
"""
max_wait_time = self._write_options.max_close_wait / 1000
waited = 0
sleep_period = 0.1
# Wait for writing to finish
while not self._disposable.is_disposed:
sleep(sleep_period)
waited += sleep_period
# Have we reached the upper limit?
if waited >= max_wait_time:
logger.warning(
"Reached max_close_wait (%s seconds) waiting for batches to finish writing. Force closing",
max_wait_time
)
break
if self._window_scheduler:
self._window_scheduler.executor.shutdown(wait=False)
self._window_scheduler = None
if self._disposable:
self._disposable = None
pass
def _write_batching(self, bucket, org, data,
precision=DEFAULT_WRITE_PRECISION,
**kwargs):
if isinstance(data, bytes):
_key = _BatchItemKey(bucket, org, precision)
self._subject.on_next(_BatchItem(key=_key, data=data))
elif isinstance(data, str):
self._write_batching(bucket, org, data.encode(_UTF_8_encoding),
precision, **kwargs)
elif isinstance(data, Point):
self._write_batching(bucket, org, data.to_line_protocol(), data.write_precision, **kwargs)
elif isinstance(data, dict):
self._write_batching(bucket, org, Point.from_dict(data, write_precision=precision, **kwargs),
precision, **kwargs)
elif 'DataFrame' in type(data).__name__:
serializer = DataframeSerializer(data, self._point_settings, precision, self._write_options.batch_size,
**kwargs)
for chunk_idx in range(serializer.number_of_chunks):
self._write_batching(bucket, org,
serializer.serialize(chunk_idx),
precision, **kwargs)
elif hasattr(data, "_asdict"):
# noinspection PyProtectedMember
self._write_batching(bucket, org, data._asdict(), precision, **kwargs)
elif _HAS_DATACLASS and dataclasses.is_dataclass(data):
self._write_batching(bucket, org, dataclasses.asdict(data), precision, **kwargs)
elif isinstance(data, Iterable):
for item in data:
self._write_batching(bucket, org, item, precision, **kwargs)
elif isinstance(data, Observable):
data.subscribe(lambda it: self._write_batching(bucket, org, it, precision, **kwargs))
pass
return None
def _http(self, batch_item: _BatchItem):
logger.debug("Write time series data into InfluxDB: %s", batch_item)
if self._retry_callback:
def _retry_callback_delegate(exception):
return self._retry_callback(batch_item.to_key_tuple(), batch_item.data, exception)
else:
_retry_callback_delegate = None
retry = self._write_options.to_retry_strategy(retry_callback=_retry_callback_delegate)
self._post_write(False, batch_item.key.bucket, batch_item.key.org, batch_item.data,
batch_item.key.precision, urlopen_kw={'retries': retry})
logger.debug("Write request finished %s", batch_item)
return _BatchResponse(data=batch_item)
def _post_write(self, _async_req, bucket, org, body, precision, **kwargs):
return self._write_service.post_write(org=org, bucket=bucket, body=body, precision=precision,
async_req=_async_req,
content_type="text/plain; charset=utf-8",
**kwargs)
def _to_response(self, data: _BatchItem, delay: timedelta):
return rx.of(data).pipe(
ops.subscribe_on(self._write_options.write_scheduler),
# use delay if its specified
ops.delay(duetime=delay, scheduler=self._write_options.write_scheduler),
# invoke http call
ops.map(lambda x: self._http(x)),
# catch exception to fail batch response
ops.catch(handler=lambda exception, source: rx.just(_BatchResponse(exception=exception, data=data))),
)
def _jitter_delay(self):
return timedelta(milliseconds=random() * self._write_options.jitter_interval)
def _on_next(self, response: _BatchResponse):
if response.exception:
logger.error("The batch item wasn't processed successfully because: %s", response.exception)
if self._error_callback:
try:
self._error_callback(response.data.to_key_tuple(), response.data.data, response.exception)
except Exception as e:
"""
Unfortunately, because callbacks are user-provided generic code, exceptions can be entirely
arbitrary
We trap it, log that it occurred and then proceed - there's not much more that we can
really do.
"""
logger.error("The configured error callback threw an exception: %s", e)
else:
logger.debug("The batch item: %s was processed successfully.", response)
if self._success_callback:
try:
self._success_callback(response.data.to_key_tuple(), response.data.data)
except Exception as e:
logger.error("The configured success callback threw an exception: %s", e)
@staticmethod
def _on_error(ex):
logger.error("unexpected error during batching: %s", ex)
def _on_complete(self):
self._disposable.dispose()
logger.info("the batching processor was disposed")
def __getstate__(self):
"""Return a dict of attributes that you want to pickle."""
state = self.__dict__.copy()
# Remove rx
del state['_subject']
del state['_disposable']
del state['_window_scheduler']
del state['_write_service']
return state
def __setstate__(self, state):
"""Set your object with the provided dict."""
self.__dict__.update(state)
# Init Rx
self.__init__(self._influxdb_client,
self._write_options,
self._point_settings,
success_callback=self._success_callback,
error_callback=self._error_callback,
retry_callback=self._retry_callback)