-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrtsymp.py
131 lines (93 loc) · 2.96 KB
/
rtsymp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import math
from matplotlib import pyplot as plt
from scipy import stats as sps
from scipy.stats import gamma
from scipy.stats import poisson
def logfactorial(n):
# returns log(n!) for a numpy array.
lf = np.zeros(n.size)
for i in range(n.size):
for j in range(int(n[i])+1):
if j == 0:
continue
lf[i] += np.log(j)
return lf
def percentile(data, p):
# data contain a probability (or likelyhood) distribution, and this returns the p-th percentile position.
s = data.sum()
ndata = data/s
percent = 0.0
for i in range(len(ndata)):
percent += ndata[i]
if percent > p/100.0:
break
return i
#dailyfile = open('testdata.txt', 'r')
#dailyfile = open('sympdata_it.csv', 'r')
dailyfile = open('sympdatadl.csv', 'r')
daily = []
for line in dailyfile.readlines():
fields = line.split(',')
# daily.append(float(fields[1]))
daily.append(int(fields[1]))
dailyfile.close()
days = len(daily)
# the daily data of infection (the number of positive symptomatic based on the date of sympton onset)
I = np.array(daily)
#(days,)
rmin, rmax, rsteps = 0.01,5,500
# candidates for R_t.
r = (np.matrix(np.linspace(rmin, rmax, rsteps))).transpose()
#(1,rsteps)
# parameters for the Gamma distribution
shape = 1.87
rate = 0.28
scale=1/rate
# window of estimate
tau = 7
# cutoff for infection (14 days for quarantine, 30 days should be enough)
Tmax = 30
# the reporting delay, 14 days
delay = 14
# the infectivity of a single infected
w = gamma.pdf(np.linspace(0,Tmax,Tmax+1), shape,0,scale)
#(Tmax+1,)
# range of calculation. We have to wait for Tmax in order to accumulate the data
t = np.linspace(Tmax, days-Tmax-tau, days-Tmax-tau+1)
#(days-Tmax-tau,)
Lambda = np.matrix((np.convolve(w,I))[Tmax:days:1])
Ic = I[Tmax:days:1]
#plt.plot(np.linspace(0,days-Tmax-1,days-Tmax),logfactorial(I)[Tmax:days:1],linewidth=2, color='r')
#plt.show()
logP = np.array(np.log(r * Lambda)) * Ic - np.array(r * Lambda) - logfactorial(Ic)
logLt = np.empty((rsteps, days-Tmax-tau+1))
C = np.ones(tau)
for i in range(rsteps):
logLt[i] = np.convolve(logP[i],C,'valid')
logL = logLt.transpose()
normalizer = np.empty((days-Tmax-tau+1))
normalizedlogL = np.empty((days-Tmax-tau+1,rsteps))
for i in range(days-Tmax-tau+1):
normalizer[i] = logL[i].max()
normalizedlogL[i] = logL[i]-normalizer[i]
L = np.exp(normalizedlogL)
Prob = np.empty((days-Tmax-tau+1,rsteps))
for i in range(days-Tmax-tau+1):
Prob[i] = L[i]/L[i].sum()
R5 = np.empty((days-Tmax-tau+1))
R = np.empty((days-Tmax-tau+1))
R95 = np.empty((days-Tmax-tau+1))
for i in range(days-Tmax-tau+1):
R5[i] = r[percentile(Prob[i],5)]
R[i] = r[L[i].argmax()]
R95[i] = r[percentile(Prob[i],95)-1] # to make 5 and 95-th percentile symmetric
#plt.plot(r,L[10],linewidth=2, color='r')
#plt.savefig('perc.png')
# ignores the last 14 days because the data are unreliable due to reporting delay
plt.plot(t[0:len(t)-delay],R[0:len(R)-delay],linewidth=2, color='r')
plt.show()
#plt.savefig('rtsymp.png')
#print(R5)
print(R)
#print(R95)