-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
43 lines (34 loc) · 1.52 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import streamlit as st
import pickle
import pandas as pd
import requests
def fetch_poster(movie_id):
response = requests.get(f'https://api.themoviedb.org/3/movie/{movie_id}?api_key=8265bd1679663a7ea12ac168da84d2e8&language=en-US')
data = response.json()
poster_path = data['poster_path']
return f"https://image.tmdb.org/t/p/w500/{poster_path}"
def recommend(movie):
movie_index = movies[movies['title'] == movie].index[0]
distances = similarity[movie_index]
movies_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6]
recommended_movies = []
recommended_movies_posters = []
for i in movies_list:
movie_id = movies.iloc[i[0]].movie_id
recommended_movies.append(movies.iloc[i[0]].title)
recommended_movies_posters.append(fetch_poster(movie_id))
return recommended_movies, recommended_movies_posters
movies_dict = pickle.load(open('movie_dict.pkl', 'rb'))
movies = pd.DataFrame(movies_dict)
similarity = pickle.load(open('similarity.pkl', 'rb'))
st.header("CineCloud - Find Movies You'll Love!")
selected_movie_name = st.selectbox(
'Select a movie you like:',
movies['title'].values
)
if st.button('Recommend'):
names, posters = recommend(selected_movie_name)
cols = st.columns(5)
for col, name, poster in zip(cols, names, posters):
with col:
st.markdown(f"<div style='text-align: center;'><img src='{poster}' style='width:100%;'><p style='margin-top: 10px;'><strong>{name}</strong></p></div>", unsafe_allow_html=True)