-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmCovarEst.bas
200 lines (181 loc) · 6.76 KB
/
mCovarEst.bas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
Attribute VB_Name = "mCovarEst"
Option Explicit
'*** Input in this module is x(1 to T, 1 to n_stk)
'*** where x(t, i) the the return of stock i at time t
'*** T is the time horizon, n_stk is the number of stocks\
'*** Output is a covariance matrix of size n_stk x n_stk
'*** Requires: cCorex_Linear, modMath
'Sample Convariance
Function Sample(x() As Double) As Double()
If UBound(x, 1) <= UBound(x, 2) Then
Debug.Print "mCovarEst:Sample:Caution, # of obs(" & UBound(x, 1) & ") <= dimension (" & UBound(x, 2) & ")."
End If
Sample = modMath.Covariance_Matrix(x)
End Function
'Convariance estimated with total correlation model
Function Corex(x() As Double, n_latent As Long) As Double()
Dim n_dimension As Long
Dim corex1 As cCorex_Linear
n_dimension = UBound(x, 2)
Set corex1 = New cCorex_Linear
With corex1
Call .Init(n_dimension, n_latent)
Call .Train(x)
Corex = .Covariance_Est
Call .Restore_x(x)
Call .Reset
End With
Set corex1 = Nothing
End Function
'Convariance estimated with single index model
'requires input of x_index(1 to T), return of the chosen index which has the same time horizon as x()
Function SingleIndex(x() As Double, x_index() As Double) As Double()
Dim i As Long, j As Long, k As Long, n_dimension As Long, n_obs As Long
Dim tmp_x As Double, tmp_y As Double, s_index As Double
Dim xn() As Double, beta() As Double, eps As Double, betas() As Double, s_eps() As Double
Dim covar() As Double
n_obs = UBound(x, 1)
n_dimension = UBound(x, 2)
'variance of market index
tmp_x = 0
tmp_y = 0
For i = 1 To n_obs
tmp_x = tmp_x + x_index(i)
tmp_y = tmp_y + x_index(i) ^ 2
Next i
's_index = (tmp_y - (tmp_x / n_obs) * tmp_x) * n_obs / (n_obs - 1)
s_index = (tmp_y - (tmp_x / n_obs) * tmp_x) / (n_obs - 1)
'Linear regression of each stock vs index to get
'betas & variance of residuals
ReDim xn(1 To n_obs)
ReDim betas(1 To n_dimension) 'beta to market index
ReDim s_eps(1 To n_dimension) 'variance of residual
For j = 1 To n_dimension
If j Mod 50 = 0 Then DoEvents
For i = 1 To n_obs
xn(i) = x(i, j)
Next i
Call modMath.linear_regression_single(xn, x_index, beta)
tmp_x = 0
tmp_y = 0
For i = 1 To n_obs
eps = xn(i) - (beta(1) * x_index(i) + beta(2))
tmp_x = tmp_x + eps
tmp_y = tmp_y + eps ^ 2
Next i
s_eps(j) = (tmp_y - (tmp_x / n_obs) * tmp_x) / (n_obs - 1)
betas(j) = beta(1)
Next j
'Compute the convariance matrix
ReDim covar(1 To n_dimension, 1 To n_dimension)
For i = 1 To n_dimension
covar(i, i) = s_eps(i) + s_index * (betas(i) ^ 2)
For j = i + 1 To n_dimension
covar(i, j) = betas(i) * betas(j) * s_index
covar(j, i) = covar(i, j)
Next j
Next i
SingleIndex = covar
Erase covar, xn, betas, s_eps
End Function
'"Honey, I Shrunk the Sample Covariance Matrix"
'Olivier Ledoit, Michael Wolf (2003)
Function Ledoit(x() As Double) As Double()
Dim i As Long, j As Long, k As Long, n_dimension As Long, n_obs As Long
Dim tmp_x As Double, tmp_y As Double, tmp_z As Double
Dim x_avg() As Double, covar() As Double, f() As Double
Dim correl_avg As Double, gamma As Double, pi As Double, rho As Double, shrink_factor As Double
n_obs = UBound(x, 1)
n_dimension = UBound(x, 2)
'=== mean of each dimension
ReDim x_avg(1 To n_dimension)
For i = 1 To n_dimension
For k = 1 To n_obs
x_avg(i) = x_avg(i) + x(k, i)
Next k
x_avg(i) = x_avg(i) / n_obs
Next i
'=== Sample Covariance Matrix
ReDim covar(1 To n_dimension, 1 To n_dimension)
For i = 1 To n_dimension
tmp_x = 0
For k = 1 To n_obs
tmp_x = tmp_x + (x(k, i) - x_avg(i)) ^ 2
Next k
covar(i, i) = tmp_x / (n_obs - 1)
For j = i + 1 To n_dimension
tmp_x = 0
For k = 1 To n_obs
tmp_x = tmp_x + (x(k, i) - x_avg(i)) * (x(k, j) - x_avg(j))
Next k
covar(i, j) = tmp_x / (n_obs - 1)
covar(j, i) = covar(i, j)
Next j
Next i
'=== Average pairwise correlation
correl_avg = 0
For i = 1 To n_dimension - 1
For j = i + 1 To n_dimension
correl_avg = correl_avg + covar(i, j) / Sqr(covar(i, i) * covar(j, j))
Next j
Next i
correl_avg = correl_avg * 2 / (n_dimension * (n_dimension - 1))
'=== Shrinkage Target
ReDim f(1 To n_dimension, 1 To n_dimension)
For i = 1 To n_dimension
f(i, i) = covar(i, i)
For j = i + 1 To n_dimension
f(i, j) = correl_avg * Sqr(covar(i, i) * covar(j, j))
f(j, i) = f(i, j)
Next j
Next i
'=== Shrinkage Intensity
gamma = 0
pi = 0
rho = 0
For i = 1 To n_dimension - 1
For j = i + 1 To n_dimension
gamma = gamma + (f(i, j) - covar(i, j)) ^ 2
tmp_x = 0
For k = 1 To n_obs
tmp_x = tmp_x + ((x(k, i) - x_avg(i)) * (x(k, j) - x_avg(j)) - covar(i, j)) ^ 2
Next k
pi = pi + tmp_x / n_obs
tmp_x = 0
tmp_y = 0
For k = 1 To n_obs
tmp_z = (x(k, i) - x_avg(i)) * (x(k, j) - x_avg(j)) - covar(i, j)
tmp_x = tmp_x + ((x(k, i) - x_avg(i)) ^ 2 - covar(i, i)) * tmp_z
tmp_y = tmp_y + ((x(k, j) - x_avg(j)) ^ 2 - covar(j, j)) * tmp_z
Next k
rho = rho + (tmp_x * Sqr(covar(j, j) / covar(i, i)) + tmp_y * Sqr(covar(i, i) / covar(j, j))) / n_obs
Next j
Next i
gamma = gamma * 2
pi = pi * 2
rho = rho * correl_avg
For i = 1 To n_dimension
gamma = gamma + (f(i, i) - covar(i, i)) ^ 2
tmp_x = 0
For k = 1 To n_obs
tmp_x = tmp_x + ((x(k, i) - x_avg(i)) ^ 2 - covar(i, i)) ^ 2
Next k
pi = pi + tmp_x / n_obs
rho = rho + tmp_x / n_obs
Next i
shrink_factor = ((pi - rho) / gamma) / n_obs
If shrink_factor > 1 Then shrink_factor = 1
If shrink_factor < 0 Then shrink_factor = 0
'=== Apply Shrinkage
For i = 1 To n_dimension
covar(i, i) = (1 - shrink_factor) * covar(i, i) + shrink_factor * f(i, i)
If i < n_dimension Then
For j = i + 1 To n_dimension
covar(i, j) = (1 - shrink_factor) * covar(i, j) + shrink_factor * f(i, j)
covar(j, i) = covar(i, j)
Next j
End If
Next i
Ledoit = covar
Erase covar, x_avg, f
End Function