-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain_train.py
62 lines (56 loc) · 2.79 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os, sys
import argparse
import shutil
import yaml
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from lib.trainer import Trainer
def train(subject_name, exp_cfg, args=None):
cfg = get_cfg_defaults()
cfg = update_cfg(cfg, exp_cfg)
cfg = update_cfg(cfg, data_cfg)
cfg.cfg_file = data_cfg
cfg.group = data_type
cfg.dataset.path = os.path.abspath(cfg.dataset.path)
cfg.clean = args.clean
cfg.output_dir = os.path.join(args.exp_dir, data_type, subject_name)
cfg.wandb_name = args.wandb_name
if 'nerf' in exp_cfg:
cfg.exp_name = f'{subject_name}_nerf'
cfg.output_dir = os.path.join(args.exp_dir, data_type, subject_name, 'nerf')
cfg.ckpt_path = os.path.abspath('./exps/snapshot/male-3-casual/model.tar') # any pretrained nerf model to have a better initialization
else:
cfg.exp_name = f'{subject_name}_hybrid'
cfg.output_dir = os.path.join(args.exp_dir, data_type, subject_name, 'hybrid')
cfg.ckpt_path = os.path.join(args.exp_dir, data_type, subject_name, 'nerf', 'model.tar')
if args.clean:
shutil.rmtree(cfg.output_dir)
os.makedirs(os.path.join(cfg.output_dir), exist_ok=True)
shutil.copy(data_cfg, os.path.join(cfg.output_dir, 'config.yaml'))
shutil.copy(exp_cfg, os.path.join(cfg.output_dir, 'exp_config.yaml'))
# creat folders
os.makedirs(os.path.join(cfg.output_dir, cfg.train.log_dir), exist_ok=True)
os.makedirs(os.path.join(cfg.output_dir, cfg.train.vis_dir), exist_ok=True)
os.makedirs(os.path.join(cfg.output_dir, cfg.train.val_vis_dir), exist_ok=True)
with open(os.path.join(cfg.output_dir, cfg.train.log_dir, 'full_config.yaml'), 'w') as f:
yaml.dump(cfg, f, default_flow_style=False)
# start training
trainer = Trainer(config=cfg)
trainer.fit()
if __name__ == '__main__':
from lib.utils.config import get_cfg_defaults, update_cfg
parser = argparse.ArgumentParser()
parser.add_argument('--wandb_name', type=str, default = 'SCARF', help='project name')
parser.add_argument('--exp_dir', type=str, default = './exps', help='exp dir')
parser.add_argument('--data_cfg', type=str, default = 'configs/data/mpiis/DSC_7157.yml', help='data cfg file path')
parser.add_argument('--exp_cfg', type=str, default = 'configs/exp/tage_0_nerf.yml', help='exp cfg file path')
parser.add_argument('--clean', action="store_true", help='delete output dir if exists, if not, the training will be resumed.')
args = parser.parse_args()
#
#-- data setting
data_cfg = args.data_cfg
data_type = data_cfg.split('/')[-2]
subject_name = data_cfg.split('/')[-1].split('.')[0]
#-- exp setting
exp_cfg = args.exp_cfg
# ### ------------- start training
train(subject_name, exp_cfg, args)