-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlaxWendroff001.m
124 lines (103 loc) · 4.73 KB
/
laxWendroff001.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
% 2019862s
% Yana Staneva
% Implementation of Lax-Wendroff with spatial step dx = 0.01
dx=0.01; % Define spatial step
dt=dx; % Assign same temporal step, CFL satisfied
X=2; % Spatial boundary
x=0:dx:X; % Spatial domain
xb=0.1; % Initial condition for back of the wave
xf=0.3; % Initial condition for front of the wave
Tf=2; % Temporal boundary
t = (0:dt:2); % Temporal domain
n=floor(X/dx); % Number of grid points in space
n1=floor(xb/dx); % Grid points before the back of the wave at t=0
n2=floor(xf/dx); % Grid points before the front of the wave at t=0
uExactIter = zeros(1,n+1); % Initialize exact solution
uExact = zeros(1,n+1); % Initialize variable to store the exact solution
nt=floor(Tf/dt); % Number of grid points in time domain
nu=dt/dx; % Courant number
for i = 1:nt+1
polyBack = [1 -0.1 1 -t(i)-0.1]; % Polynomial interpolant for back
polyFront = [1 -0.3 1 -t(i)-0.3]; % Polynomial interpolant for front
xback = roots(polyBack); % Compute the roots of the back polynomial
xback = xback(imag(xback)==0); % Store only real roots
xb(i)=xback; % Store the computed root for the current iteration
xfront = roots(polyFront); % Compute the roots of the front polynomial
xfront = xfront(imag(xfront)==0); % Store only real roots
xf(i)=xfront; % Store the computed root for the current iteration
for j = 1:n+1
if x(j)>=xb(i) && x(j)<=xf(i) % For x between calculated xb and xf
uExactIter(j) = 1; % Set the amplitude of the wave to be 1
else
uExactIter(j) = 0; % Otherwise it is 0
end
end
uExact(i,:) = uExactIter; % Save the obtained value to use in the next iteration
end
u0=[zeros(1,n1),ones(1,n2-n1+1),zeros(1,n-n2)]; % Initial condition for u
u = u0; % Initialize u to IC values
uNumerical(1,:)=u0; % Initialize vector to store the numerical solution
time(1,1)=0; % Initialize vector to store the temporal interval
uNumericalIter=u0; % Initialize vector to store the values for the next iteration
for k=1:nt
t=k*dt; % Current time for the iteration
% Velocity functions
a=(1+x.^2)./((1+x.^2).^2 + 2*x*t);
aHalfPlusTime=(1+x.^2)./((1+x.^2).^2+2*x*t+x*dt); % A^{n+1}
aHalfPlusSpace=(1+x.^2+x.*dx+0.25*dx.^2)./(((1+x.^2+x.*dx+0.25*dx.^2)).^2 + 2*x*t+dx*t); % A_{j+1/2}
aHalfMinusSpace=(1+x.^2-x.*dx+0.25*dx.^2)./(((1+x.^2-x.*dx+0.25*dx.^2)).^2 + 2*x*t-dx*t); % A_{j-1/2}
% Preallocate values of neighbouring U nodes
uPlusSpace=(uNumericalIter(3:n+1)-uNumericalIter(2:n)); % U_{j+1}
uMinusSpace=(uNumericalIter(2:n)-uNumericalIter(1:n-1)); % U_{j-1}
% Evaluate U_{j}^{n}
u(2:n) = uNumericalIter(2:n)-(0.5*aHalfPlusTime(2:n).*nu.*(uNumericalIter(3:n+1)-uNumericalIter(1:n-1)))+ ...
(0.5*nu.^2.*a(2:n)).*(aHalfPlusSpace(2:n).*uPlusSpace-aHalfMinusSpace(2:n).* uMinusSpace);
% Store Solution
uNumerical(k+1,:)=u;
% Update time with temporal step
time(k+1,1)=k*dt;
% Update value of U for next iteration
uNumericalIter=u;
end
% Plot of solution by Lax-Wendroff and Exact
numericalExact001=figure;
set(gcf,'units','points','position',[2,2,330,900]);
set(numericalExact001,'PaperPositionMode', 'auto');
subplot(4,1,1);plot(x,uNumerical(11,:),'-k',x,uExact(11,:),':k');
axis=([0 2 -0.5 1.5]);
title('t=0.1');
xlabel('x');
ylabel('Solutions');
legend('Lax-Wendroff','Exact','Location','northeast');
hold on
subplot(4,1,2);plot(x,uNumerical(21,:),'-k',x,uExact(21,:),':k');
title('t=0.2');
xlabel('x');
ylabel('Solutions');
legend('Lax-Wendroff','Exact','Location','northeast');
hold on
subplot(4,1,3);plot(x,uNumerical(71,:),'-k',x,uExact(71,:),':k');
title('t=0.7');
xlabel('x');
ylabel('Solutions');
legend('Lax-Wendroff','Exact','Location','northeast');
hold on
subplot(4,1,4);plot(x,uNumerical(101,:),'-k',x,uExact(101,:),':k');
title('t=1');
xlabel('x');
ylabel('Solutions');
legend('Lax-Wendroff','Exact','Location','northeast');
suptitle('\Delta x=0.01');
%print(numericalExact001,'/Users/yanastaneva/Library/Mobile Documents/com~apple~CloudDocs/Year 5/Numerical Methods/Assignments/AC2/report/numericalExact001test.eps','-deps');
figure(numericalExact001);
% % U as a function of time for x=0.5
uFunctionOfTime001=figure;
plot(time, uNumerical(:,51),'-k');
hold on
plot(time, uExact(:,51),':k');
title('Plot of u(x=0.5, t) as a function of time for \Delta x = 0.01.');
xlabel('t');
ylabel('u(x=0.5)');
legend('Lax-Wendroff','Exact','Location','northeast');
%print(uFunctionOfTime001,'/Users/yanastaneva/Library/Mobile Documents/com~apple~CloudDocs/Year 5/Numerical Methods/Assignments/AC2/report/uFunctionOfTime001test.jpeg','-djpeg');
figure(uFunctionOfTime001);