-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvm.py
81 lines (70 loc) · 2.51 KB
/
svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import collections
import numpy as np
import pandas as pd
#!/usr/bin/python
np.random.seed(100)
import sys
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
output=open('output.txt','a')
def svn(lowNgram,highNgram,listOfC):
output.write(":::::::::::::::::::::::SVM::::::::::::::::::::\n")
df = pd.read_csv('data.csv', header=None)
dfTest = pd.read_csv('dataTest.csv', header=None)
reviews_train = []
reviews_test = []
trainTarget = []
testTarget = []
for i in range(df.__len__()):
reviews_train.append(df.iloc[i, 0].strip())
# print(reviews_train[i])
trainTarget.append(df.iat[i, 1])
for i in range(dfTest.__len__()):
reviews_test.append(dfTest.iloc[i, 0].strip())
testTarget.append(dfTest.iat[i, 1])
stop_words = ['in', 'of', 'at', 'a', 'the']
ngram_vectorizer = CountVectorizer(binary=False, ngram_range=(lowNgram, highNgram), stop_words=stop_words)
ngram_vectorizer.fit(reviews_train)
X = ngram_vectorizer.transform(reviews_train)
X_test2 = ngram_vectorizer.transform(reviews_test)
X_train3, X_val3, y_train3, y_val3 = train_test_split(
X, trainTarget, train_size=0.75
)
print("Pre-Process Done")
bestC=0
bestAcc=-100000
for c in listOfC:
svm = LinearSVC(C=c)
svm.fit(X_train3, y_train3)
acc = accuracy_score(y_val3, svm.predict(X_val3))
output.write("vallue of C::" + str(c) + " " + str(acc) + "\n")
print("Accuracy for C=%s: %s"% (c, acc))
if (acc > bestAcc):
bestC = c
bestAcc=acc
# Accuracy for C=0.01: 0.89104
# Accuracy for C=0.05: 0.88736
# Accuracy for C=0.25: 0.8856
# Accuracy for C=0.5: 0.88608
# Accuracy for C=1: 0.88592
final_svm_ngram = LinearSVC(C=bestC)
final_svm_ngram.fit(X, trainTarget)
tacc=accuracy_score(testTarget, final_svm_ngram.predict(X_test2))
output.write("Best C:: "+str(bestC)+"Final Accuracy on Test data:: "+str(tacc)+"\n")
print("Final Accuracy: %s"
% tacc)
fileName=sys.argv[1]
with open(fileName) as openfileobject:
ls=[]
for line in openfileobject:
ls=line.split()
print(ls)
cValues=[]
for i in range(len(ls)-2):
cValues.append(float(ls[i+2]))
print(cValues)
svn(int(ls[0]),int(ls[1]),cValues)
output.close()