-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMI.py
175 lines (146 loc) · 8.28 KB
/
MI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# -*- coding: utf-8 -*-
"""
Construct module for mutual-information based registration.
__author__ = Xinzhe Luo
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class MI(nn.Module):
"""
Mutual information module.
"""
def __init__(self, dimension, num_bins=64, sample_rate=1, kernel_sigma=1, eps=1e-8, **kwargs):
super(MI, self).__init__()
self.dimension = dimension
self.num_bins = num_bins
self.sample_rate = sample_rate
self.kernel_sigma = kernel_sigma
self._kernel_radius = math.ceil(2 * self.kernel_sigma)
self.eps = eps
self.kwargs = kwargs
self.bk_threshold = self.kwargs.pop('bk_threshold', float('-inf'))
self.normalized = self.kwargs.pop('normalized', False)
if self.dimension == 2:
self.scale_mode = 'bicubic'
elif self.dimension == 3:
self.scale_mode = 'trilinear'
else:
raise NotImplementedError
def forward(self, source, target, mask=None, **kwargs):
"""
Compute mutual information by Parzen window estimation.
:param source: tensor of shape [B, 1, *vol_shape]
:param target: tensor of shape [B, 1, *vol_shape]
:param mask: tensor of shape [B, 1, *vol_shape]
:return:
"""
scale = kwargs.pop('scale', 0)
num_bins = kwargs.pop('num_bins', self.num_bins)
assert source.shape == target.shape
if mask is None:
mask = torch.ones_like(source)
image_mask = mask.to(torch.bool) & (source > self.bk_threshold) & (target > self.bk_threshold)
if scale > 0:
source = F.interpolate(source, scale_factor=2 ** (- scale), mode=self.scale_mode)
target = F.interpolate(target, scale_factor=2 ** (- scale), mode=self.scale_mode)
image_mask = F.interpolate(image_mask.to(target.dtype), scale_factor=2 ** (- scale),
mode='nearest').to(torch.bool)
B = source.shape[0]
masked_source = [torch.masked_select(source[i], mask=image_mask[i]) for i in range(B)]
masked_target = [torch.masked_select(target[i], mask=image_mask[i]) for i in range(B)]
sample_mask = torch.rand_like(masked_source[0]).le(self.sample_rate)
sampled_source = [torch.masked_select(masked_source[i], mask=sample_mask) for i in range(B)]
sampled_target = [torch.masked_select(masked_target[i], mask=sample_mask) for i in range(B)]
source_max_v = torch.stack([s.amax().detach() for s in sampled_source])
source_min_v = torch.stack([s.amin().detach() for s in sampled_source])
target_max_v = torch.stack([t.amax().detach() for t in sampled_target])
target_min_v = torch.stack([t.amin().detach() for t in sampled_target])
source_bin_width = (source_max_v - source_min_v) / num_bins
source_pad_min_v = source_min_v - source_bin_width * self._kernel_radius
target_bin_width = (target_max_v - target_min_v) / num_bins
target_pad_min_v = target_min_v - target_bin_width * self._kernel_radius
bin_center = torch.arange(num_bins + 2 * self._kernel_radius, dtype=source.dtype, device=source.device)
source_bin_pos = [(sampled_source[i] - source_pad_min_v[i]) / source_bin_width[i] for i in range(B)]
target_bin_pos = [(sampled_target[i] - target_pad_min_v[i]) / target_bin_width[i] for i in range(B)]
source_bin_idx = [p.floor().clamp(min=self._kernel_radius,
max=self._kernel_radius + num_bins - 1).detach() for p in source_bin_pos]
target_bin_idx = [p.floor().clamp(min=self._kernel_radius,
max=self._kernel_radius + num_bins - 1).detach() for p in target_bin_pos]
source_min_win_idx = [(i - self._kernel_radius + 1).to(torch.int64) for i in source_bin_idx]
target_min_win_idx = [(i - self._kernel_radius + 1).to(torch.int64) for i in target_bin_idx]
source_win_idx = [torch.stack([(smwi + r) for r in range(self._kernel_radius * 2)])
for smwi in source_min_win_idx]
target_win_idx = [torch.stack([(tmwi + r) for r in range(self._kernel_radius * 2)])
for tmwi in target_min_win_idx]
source_win_bin_center = [torch.gather(bin_center.unsqueeze(1).repeat(1, source_win_idx[i].size(1)),
dim=0, index=source_win_idx[i])
for i in range(B)]
target_win_bin_center = [torch.gather(bin_center.unsqueeze(1).repeat(1, target_win_idx[i].size(1)),
dim=0, index=target_win_idx[i])
for i in range(B)]
source_win_weight = [self._bspline_kernel(source_bin_pos[i].unsqueeze(0) - source_win_bin_center[i])
for i in range(B)]
target_win_weight = [self._bspline_kernel(target_bin_pos[i].unsqueeze(0) - target_win_bin_center[i])
for i in range(B)]
source_bin_weight = torch.stack([torch.stack([torch.sum(source_win_idx[i].eq(idx) * source_win_weight[i], dim=0)
for idx in range(num_bins + self._kernel_radius * 2)], dim=0)
for i in range(B)])
target_bin_weight = torch.stack([torch.stack([torch.sum(target_win_idx[i].eq(idx) * target_win_weight[i], dim=0)
for idx in range(num_bins + self._kernel_radius * 2)], dim=0)
for i in range(B)])
source_hist = source_bin_weight.sum(-1)
target_hist = target_bin_weight.sum(-1)
joint_hist = torch.bmm(source_bin_weight, target_bin_weight.transpose(1, 2))
source_density = source_hist / source_hist.sum(dim=-1, keepdim=True).clamp(min=self.eps)
target_density = target_hist / target_hist.sum(dim=-1, keepdim=True).clamp(min=self.eps)
joint_density = joint_hist / joint_hist.sum(dim=(1, 2), keepdim=True).clamp(min=self.eps)
return source_density, target_density, joint_density
def mi(self, source, target, mask=None, **kwargs):
"""
(Normalized) mutual information
:param source:
:param target:
:param mask:
:return:
"""
source_density, target_density, joint_density = self.forward(source, target, mask, **kwargs)
source_entropy = - torch.sum(source_density * source_density.clamp(min=self.eps).log(), dim=-1)
target_entropy = - torch.sum(target_density * target_density.clamp(min=self.eps).log(), dim=-1)
joint_entropy = - torch.sum(joint_density * joint_density.clamp(min=self.eps).log(), dim=(1, 2))
if self.normalized:
return torch.mean((source_entropy + target_entropy) / joint_entropy)
else:
return torch.mean(source_entropy + target_entropy - joint_entropy)
def je(self, source, target, mask=None, **kwargs):
"""
Joint entropy H(S, T).
:param source:
:param target:
:param mask:
:return:
"""
_, _, joint_density = self.forward(source, target, mask, **kwargs)
joint_entropy = - torch.sum(joint_density * joint_density.clamp(min=self.eps).log(), dim=(1, 2)).mean()
return joint_entropy
def ce(self, source, target, mask=None, **kwargs):
"""
Conditional entropy H(S | T) = H(S, T) - H(T).
:param source:
:param target:
:param mask:
:return:
"""
_, target_density, joint_density = self.forward(source, target, mask, **kwargs)
target_entropy = - torch.sum(target_density * target_density.clamp(min=self.eps).log(), dim=-1).mean()
joint_entropy = - torch.sum(joint_density * joint_density.clamp(min=self.eps).log(), dim=(1, 2)).mean()
return joint_entropy - target_entropy
def _bspline_kernel(self, d):
d /= self.kernel_sigma
return torch.where(d.abs() < 1.,
(3. * d.abs() ** 3 - 6. * d.abs() ** 2 + 4.) / 6.,
torch.where(d.abs() < 2.,
(2. - d.abs()) ** 3 / 6.,
torch.zeros_like(d))
)