-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathComparison.py
207 lines (179 loc) · 6.32 KB
/
Comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# #!/usr/bin/python
# -*- coding: utf-8 -*-
from PIL import Image,ImageDraw,ImageFilter
from numpy import *
from copy import deepcopy
import operator
def Direction_Index(tuple) :
if tuple == (255,0,255) :
return 0 # 0度
elif tuple == (255,255,0) :
return 1
elif tuple == (0,0,255) :
return 2
elif tuple == (0,255,0) :
return 3
elif tuple == (255,0,0) :
return 4
elif tuple == (0,255,255) :
return 5
elif tuple == (255,255,255) :
return 6
elif tuple == (0,0,0) :
return 7 # 157.5度
# image1: 细化图 image2: 分割后的黑白图 image3: 方向图
def IsFeature(image1,image2,image3) :
width = image1.size[0]
height = image1.size[1]
pix1 = image1.load()
pix2 = image2.load()
pix3 = image3.load()
copy = image1.copy()
Draw = ImageDraw.Draw(copy)
dot = []
fork = []
for y in range(height) :
for x in range(width) :
if 0 < x < width-1 and 0 < y < height-1 and pix1[x,y] == 0 :
a = pix1[x-1,y+1]
b = pix1[x,y+1]
c = pix1[x+1,y+1]
d = pix1[x-1,y]
f = pix1[x+1,y]
g = pix1[x-1,y-1]
h = pix1[x,y-1]
i = pix1[x+1,y-1]
sum = abs(a-b) + abs(b-c) + abs(c-f) + abs(f-i) + abs(i-h) + abs(h-g) + abs(g-d) + abs(d-a)
if sum == 2 * 255 :
dot.append((x,y))
elif sum == 6 * 255 :
fork.append((x,y))
else :
continue
# 去除边缘端点 思路:根据是否靠近背景块来判断 使用了黑白分明的背景块图片1_rebuild.bmp
flag1 = 0
flag2 = 0
Feature = deepcopy(dot+fork)
for one in dot+fork :
for n in range(32) :
for m in range(32) :
tempx = one[0] - 16 + m
tempy = one[1] - 16 + n
if ( -1<tempx<width and -1<tempy<height and pix2[tempx,tempy] == 255) :
flag1 = 1
Feature.remove((one[0],one[1]))
break
elif (tempx<0 or tempx>=width or tempy<0 or tempy>=height) :
flag2 = 1
Feature.remove((one[0],one[1]))
break
else :
continue
if flag1 == 1 or flag2 == 1 :
flag1 = 0
flag2 = 0
break
else :
continue
# FeatureCopy是Feature的相同副本,用于第二次遍历比较
FeatureCopy = deepcopy(Feature)
dellist = [] # 需删除的相距太近的特征点,包含重复计算
for each in Feature :
for n in range(16) :
for m in range(16) :
tempx = each[0] - 8 + m
tempy = each[1] - 8 + n
tuple = (tempx,tempy)
for var in FeatureCopy :
if var == tuple and var != each :
dellist.append(var)
dellist.append(each)
break
else :
continue
dellist_nosame = [] # 需删除的相距太近的特征点,不包含重复计算
for each in dellist :
if each not in dellist_nosame :
dellist_nosame.append(each)
# dot是首次检测的所有端点坐标列表 fork是首次检测的所有叉点坐标列表 dot+fork 是所有特征点
# Feature是去掉边缘不合格端点和叉点后的列表
# FeatureCopy是Feature的相同模板 ,仅用于遍历判断不做增减操作。
# dellist_nosame 是所有相距太近不合格的端点和叉点的列表 Feature包含dellist_nosame
# qualified 是所有合格的特征点集,使用元组最后一位,0表示端点,1表示叉点
qualified = []
for each in Feature :
if each in dellist_nosame :
continue
else :
if each in dot :
angle = 22.5 * Direction_Index(pix3(each[0],each[1]))
Draw.ellipse((each[0]-2,each[1]-2,each[0]+2,each[1]+2),fill = 255,outline = 0)
qualified.append((each[0],each[1],angle,'dot'))
elif each in fork :
angle = 22.5 * Direction_Index(pix3(each[0],each[1]))
Draw.polygon([(each[0]-2,each[1]-2),(each[0]-2,each[1]+2),(each[0]+2,each[1]+2),(each[0]+2,each[1]-2)],fill = 255,outline = 0)
qualified.append((each[0],each[1],angle,'fork'))
return (copy,qualified)
class Point_Info() :
def __init__(self) :
self.PointType = 'default'
self.X_axis = 0
self.Y_axis = 0
self.Angle = 0
self.FivePoints = [(0,0,0,'default'),(0,0,0,'default'),(0,0,0,'default'),(0,0,0,'default'),(0,0,0,'default')]
self.triangles = [(0,0,0,0,0,'default',0,'default')] * 10
def Get_Distance(pointA,pointB) :
distance = (pointA[0]-pointB[0]) ** 2 + (pointA[1]-pointB[1]) ** 2
return distance
def GetAngle(x0,y0,x1,y1,x2,y2) :
angle1 = arctan2(float(y1-y0),float(x1-x0))
angle2 = arctan2(float(y2-y0),float(x2-x0))
angle = abs(angle1 - angle2)
return int16(angle * EPI + 0.5)
# A_feature : 第一幅标识特征点的细化图 A_qualified : 第一幅图的合格特征点集
# B_feature : 第二幅标识特征点的细化图 B_qualified : 第二幅图的合格特征点集
def Compare(A_qualified) :
A_copy = deepcopy(A_qualified)
B_copy = deepcopy(B_qualified)
Distance = []
Struct_Array = []
for i in A_qualified :
Temp = Point_Info()
Temp.PointType = i[3]
Temp.X_axis = i[0]
Temp.Y_axis = i[1]
Temp.Angle = i[2]
for j in A_copy :
if i != j :
Distance.append((Get_Distance(i,j),j))
else :
continue
Distance.sort(key = operator.itemgetter(0))
for k in range(5) :
Temp.FivePoints[k] = (A_copy[Distance[k][1]])
for m in range(len(Temp.FivePoints)) :
for n in range(m+1,len(Temp.FivePoints)) :
num = 0
d1 = Get_Distance(i,Temp.FivePoints[m])
d2 = Get_Distance(i,Temp.FivePoints[n])
angle = GetAngle(i[0],i[1],m[0],m[1],n[0],n[1])
if d1 >= d2 :
Temp.triangles[num][0] = d1
Temp.triangles[num][1] = d2
Temp.triangles[num][2] = angle
Temp.triangles[num][4] = Temp.FivePoints[m][2]
Temp.triangles[num][5] = Temp.FivePoints[m][3]
Temp.triangles[num][6] = Temp.FivePoints[n][2]
Temp.triangles[num][7] = Temp.FivePoints[n][3]
elif d1 < d2 :
Temp.triangles[num][0] = d2
Temp.triangles[num][1] = d1
Temp.triangles[num][2] = angle
Temp.triangles[num][4] = Temp.FivePoints[n][2]
Temp.triangles[num][5] = Temp.FivePoints[n][3]
Temp.triangles[num][6] = Temp.FivePoints[m][2]
Temp.triangles[num][7] = Temp.FivePoints[m][3]
Struct_Array.append(Temp)
print 'collected'
im1 = Image.open("D:\\Python27\\picture\\1\\1_ThinPro.bmp")
im2 = Image.open("D:\\Python27\\picture\\1\\1_Rebuild.bmp")