-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
472 lines (431 loc) · 18.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import numpy as np
import prox_tv as ptv
from numpy.linalg import norm
from numpy.random import randn
from sklearn.linear_model import LinearRegression
import time
from tqdm import tqdm
from scipy.linalg import khatri_rao
from numba import jit
'''
--- Version 03.12.2023 ---
Modifications:
1/ : Remove FISTA, FISTBTLineSearch, use tricks in the naive PGA for acceleration (avoid repeatedly eigendocompistion)
2/ : Add Nonnegative Initilization using NMF for Nonnegative FL and Nonngative FR
---------
Main funcs:
KTR_2D(X, M, y, r, lam1, lam2, solver0=1, solver1=1, nonneg = 1, TolFun = 5e-4, Replicates = 10, MaxIter = 125, print_iter = False)
pga_SFL(y, X, b_init, lam1, lam2, nonneg=1, a = [], delta=1e-4, max_iter=5000, print_iter = False, option=2)
pga_SFR(y, X, b_init, lam1, lam2, nonneg=1, a = [], delta=1e-4, max_iter=5000, print_iter = False, option=2)
ALS_TR_2D(X,M,y,r, TolFun=5e-4, Replicates = 10, MaxIter = 125, print_iter = False)
Misc. funcs:
2. Additive White Gaussian Noise: AWGN(x_volts, target_snr_db)
---------
'''
''' --- Benchmark 2D: Alternating Least Squares Estimation --- '''
def ALS_TR_2D(X,M,y,r, Replicates = 10, TolFun = 5e-4, MaxIter = 125, print_iter = False):
"""ALS-TR for 2D-variate matrix p1 x p2 regressors and regular vector
valued covariates of dimension of dimension p0. By default uses 10 random initial starts,
and MaxIter = 125 is the number of iterations.
Input:
X: n-by-p0 regular covariate matrix
M: n-by-p1-by-p2 matrix covariates with dim(M(i,:,:)) = p1 x p2
y: n-by-1 respsonse vector
r: rank of Kruskal matrix regression
ifeig: flag for computing exact eigendecompostion or using trace instead
Output:
beta0est: regression coefficients for the regular covariates
betaest: regression coefficients for matrix covariates
dev: deviance of final model
nriters : the nunmer of iterations before converences for each run (using random start)
---
"""
n,p0 = X.shape
d = len(M.shape)-1 # dimension of array variates
p = M.shape
p1, p2 = p[1], p[2]
dev = float('inf')
nriters = np.zeros(Replicates)
for rep in range(Replicates):
# ----------------------
# Initial Start (Random)
B0 = 1-2*np.random.rand(p1,r)
B1 = 1-2*np.random.rand(p2,r)
# Initial Deviance for B = 0
LS,_,_,_ = np.linalg.lstsq(X,y,rcond=-1)
beta0 = LS.reshape(-1,1)
dev0 = norm(y - X @ beta0)**2
#print('deviance {:.3f}'.format(dev0))
# ------ Iterations Start ------
for it in range(MaxIter):
eta0 = X @ beta0
# -- Update factor matrix B[0] of size p1 x r
Xj = M @ B1
Xj = Xj.swapaxes(1,2).reshape(n,p1*r)
bvec,_,_,_ = np.linalg.lstsq(Xj,y-eta0,rcond=-1)
B0 = bvec.reshape(r,p1).T
# -- Update factor matrix B[1] of size p2 x r
Xj = M.swapaxes(1,2) @ B0
Xj = Xj.swapaxes(1,2).reshape(n,p2*r)
bvec,_,_,_ = np.linalg.lstsq(Xj,y-eta0,rcond=-1)
B1 = bvec.reshape(r,p2).T
# -- Update Reguar Coefficient Vector beta0 of size p0 x 1
eta = Xj @ bvec.reshape(-1,1)
beta0,_,_,_ = np.linalg.lstsq(X,y-eta,rcond=-1)
beta0 = beta0.reshape(-1,1)
# -- Check for Convergence
yhat0 = y - eta - X @ beta0
devtmp = norm(yhat0)**2
diffdev = devtmp - dev0
dev0 = devtmp
abs_err = abs(diffdev)/abs(dev0);
if print_iter:
print("rep {:3d} iter {:3d} abs error {:10.7f} deviance {:.3f}".format(rep,it,abs_err,dev0))
if (abs_err <TolFun) and (it > 5):
nriters[rep]=it
break
# ------ Iterations Done ------
if it == MaxIter:
print('Max iterations reached in replicate nr',rep)
nriters[rep]=MaxIter
# Record if smallest deviance
if (dev0 < dev) :
etaest = eta
beta0est = beta0
B0est = B0
B1est = B1
dev = dev0
yhat = yhat0
best_rep = rep
if print_iter:
print('replicate: ',rep)
print(' iterates: ',it)
print(' deviance: ',dev0)
print(' beta0: ',beta0)
return beta0est,B0est,B1est,dev,best_rep,nriters
# === General Interface for 2D Tensor/Matrix Regression ===
def KTR_2D(X,M,y,r,lam1,lam2,solver0=1,solver1=1,nonneg=1,\
B0=[],B1=[],TolFun = 5e-4,Replicates = 10,MaxIter = 125,print_iter = False):
""" Kruskal Tensor Regression for 2D-variate matrix p1 x p2 regressors and regular vector
valued covariates of dimension of dimension p0. By default uses 10 random initial starts,
and MaxIter = 125 is the number of iterations.
Input:
X : n-by-p0 regular covariate matrix
M : n-by-p1-by-p2 matrix covariates with dim(M(i,:,:)) = p1 x p2
y : n-by-1 respsonse vector
r : rank of Kruskal matrix regression
nonneg : if add nonnegativity as constriant (1 for yes)
Replicates : number of random initial starts ( = 10 by default )
MaxIter : the number of iterations ( = 125 by default)
SOLVER handle:
solver0 :: B0 solver for factor matrix B0 (default: pgaSFL)
solver1 :: B1 solver for factor matrix B1 (default: pgaSFL)
1 - pga_SFL: Proximal Gradient Algorithm (PGA) for Fused Lasso penalty
pga_SFL(y,X,b_init,lam1,lam2,nonneg=1,a = [],delta=1e-4,max_iter=5000,print_iter = False)
-----------------------------------------------------------------------------------------------------------------
2 - pga_SFR: PGA for Fused Ridge penalty
pga_SFR(y,X,b_init,lam1,lam2,nonneg=1,a = [],delta=1e-4,max_iter=5000,print_iter = False)
Output:
beta0est: regression coefficients for the regular covariates
betaest: regression coefficients for matrix covariates
dev: deviance of final model
nriters : the nunmer of iterations before converences for each run (using random start)
Based on E.O, Feb 6, 2023
Edited by X.W, Feb 7, 2023
---
2nd version, modified by XJ.W, Mar. 13, 2023:
Use gradient descent Least Squares...
"""
n,p0 = X.shape
d = len(M.shape)-1 # dimension of array variates
p = M.shape
p1, p2 = p[1], p[2]
dev = float('inf')
nriters = np.zeros(Replicates)
if isinstance(B0, list):
# random start
B0init = 1-2*np.random.rand(p1,r)
B1init = 1-2*np.random.rand(p2,r)
else:
# given start
B0init = B0
B1init = B1
for rep in range(Replicates): # remove this Replicates later...
# Initial start
B0 = B0init
B1 = B1init
# initial deviance for B = 0
# LS,_,_,_ = np.linalg.lstsq(X,y,rcond=-1)
LS,_,_ = gd_LS(y, X, b_init=[], ifeig = 1)
beta0 = LS.reshape(-1,1)
dev0 = norm(y - X @ beta0)**2
#------ iterations start
for it in range(MaxIter):
eta0 = X @ beta0
# B0 update factor matrix B[0] of size p1 x r
Xj = M @ B1
Xj = Xj.swapaxes(1,2).reshape(n,p1*r)
if solver0 == 1:
bvec,_,_ = pga_SFL(y-eta0, Xj, B0.reshape(-1,1), lam1, lam2, nonneg)
elif solver0 == 2:
bvec,_,_ = pga_SFR(y-eta0, Xj, B0.reshape(-1,1), lam1, lam2, nonneg)
B0 = bvec.reshape(r,p1).T
# B1 update factor matrix B[1] of size p2 x r
Xj = M.swapaxes(1,2) @ B0
Xj = Xj.swapaxes(1,2).reshape(n,p2*r)
if solver1 == 1:
bvec,_,_ = pga_SFL(y-eta0, Xj, B1.reshape(-1,1), lam1, lam2, nonneg)
elif solver1 == 2:
bvec,_,_ = pga_SFR(y-eta0, Xj, B1.reshape(-1,1), lam1, lam2, nonneg)
B1 = bvec.reshape(r,p2).T
#-- update reguar coefficient vector beta0 of size p0 x 1
eta = Xj @ bvec.reshape(-1,1)
# LS,_,_,_ = np.linalg.lstsq(X,y-eta,rcond=-1)
LS,_,_ = gd_LS(y, X, b_init=[], ifeig = 1)
beta0 = LS.reshape(-1,1)
#-- check for convergence
yhat0 = y - eta - X @ beta0
devtmp = norm(yhat0)**2
diffdev = devtmp - dev0
dev0 = devtmp
abs_err = abs(diffdev)/abs(dev0);
if print_iter:
print("rep {:3d} iter {:3d} abs error {:10.7f} deviance {:.3f}".format(rep,it,abs_err,dev0))
if (abs_err <TolFun) and (it > 5):
nriters[rep]=it
break
#------ iterations done
if it == MaxIter:
print('Max iterations reached in replicate nr',rep)
nriters[rep]=MaxIter
# record if smallest deviance
if (dev0 < dev) :
etaest = eta
beta0est = beta0
B0est = B0
B1est = B1
dev = dev0
yhat = yhat0
best_rep = rep
if print_iter:
print('replicate: ',rep)
print(' iterates: ',it)
print(' deviance: ',dev0)
print(' beta0: ',beta0)
return beta0est,B0est,B1est,dev,best_rep,nriters
def pga_SFL(y, X, b_init, lam1, lam2, nonneg=1, a = [], delta=1e-4, max_iter=5000, print_iter = False):
'''
Proximal Gradient Algorithm (PGA) for Fused Lasso penalty
bvec = pga_SFL(y-eta0, Xj, LS.coef_.reshape(-1,1), lam1, lam2)
inputs:
y, X N x 1 vector of responses and N x p matrix of predictors
b_init initial value to start the iteration (p x 1 vector)
lam1 penalty parameter (non-negative real) for l_1-penalty
lam2 penalty parameter (non-negative real) for FL-penalty
a fixed stepsize (needs to be smaller than 1/L, where L is the max eigenvalue of X^T*X)
delta termination threshold
max_iter maximum count of iterations
print_iter boolean (True / False) for printing or not printing information.
Returns: final coefficients, and the optimization history of coefficients for FL
with no intercept, where the objective function is:
f(b) = 1/2 * || y - X*b ||^2 + +lambda1 * sum_(i=1)^p | b[i]| +lambda2 * sum_(i=1)^(p-1) | b[i] - b[i+1] |
---
1st version, Esa Ollila, Dec. 15 2022.
---
2nd version, modified by XJ.W, Mar. 13, 2023
1/1 : Remove option==1 (never being used)
'''
# Proximal Operator for L1 norm
soft = lambda x, lam: np.sign(x)*np.maximum(np.abs(x)-lam,0)
# Fused Lasso objective
flobj = lambda b, lam1, lam2: 0.5*norm(y-X@b)**2 + \
lam1 * np.sum(np.abs(b)) + lam2 * np.sum(np.abs(b[1:]-b[:-1]))
S = []
# Lipschitz Constant Computation
if not a:
# if stepsize not given then compute the step size as 1/2 x max eigenvalue of X^T*X)
S = X.T@X
evals = np.linalg.eigvals(S)
L = np.max(np.real(evals))
# Fix the S being all zero matrix (Feb.7th, XJW)
if L < 1e-10:
return b_init, [], 1
a = 1./(2*L)
# Initialization
b_old = b_init.copy()
b_hist = []
# This is update using b <- prox(t*c + S*b)
c = X.T@y
if len(S)==0:
S = X.T@X
S = np.eye(X.shape[1]) - a*(S)
# Iteration Starts Here
for i in range(max_iter):
if lam2 == 0: # LASSO
b = soft(a*c + S@b_old, a*lam1)
else: # Fused LASSO
b = soft(ptv.tv1_1d(a*c + S@b_old,a*lam2).reshape(-1,1),a*lam1)
if nonneg == 1: # Nonnegativity Proximal Opreator
b = np.clip(b, a_min=0, a_max=None)
b_hist.append(b)
# Stopping Criteria; fixed the problem of “b” being all zeros (Feb.7th, XJW)
if norm(b) < 1e-10:
err = 0.5*delta
else:
err = norm(b_old-b)/norm(b)
if print_iter:
objval = flobj(b,lam1,lam2)
print("iter {:2d}: error = {:.6f} obj. function = {:.7f}".format(i,err,objval))
if err < delta:
objval = flobj(b,lam1,lam2)
#print("converged: iteration {:2d}: error = {:.4f} obj. function = {:.7f}".format(i,err,objval))
return b, b_hist, i
b_old = b
return b, b_hist, i
@jit(nopython=True)
def pga_SFR(y, X, b_init, lam1, lam2, nonneg=1, a = [], delta=1e-4, max_iter=5000, print_iter = False, option=2):
'''
Proximal Gradient Algorithm (PGA) for Fused Ridge penalty
bvec = pga_SFR(y-eta0, Xj, LS.coef_.reshape(-1,1), lam1, lam2)
inputs:
y, X N x 1 vector of responses and N x p matrix of predictors
b_init initial value to start the iteration (p x 1 vector)
lam1 penalty parameter (non-negative real) for l_1-penalty
lam2 penalty parameter (non-negative real) for FL-penalty
a fixed stepsize (needs to be smaller than 1/L, where L is the max eigenvalue of X^T*X)
delta termination threshold
max_iter maximum count of iterations
print_iter boolean (True / False) for printing or not printing information.
Returns: final coefficients, and the optimization history of coefficients for FL
with no intercept, where the objective function is:
f(b) = 1/2 * || y - X*b ||^2 + +lambda1 * sum_(i=1)^p | b[i]| +lambda2 * sum_(i=1)^(p-1) | b[i] - b[i+1] |
---
1st version, Esa Ollila, Dec. 15 2022.
---
2nd version, modified by XJ.W, Mar. 13, 2023
1/1 : Remove option==1 (never being used)
'''
prox_l2 = lambda x, lam: (1 - lam/(np.maximum(norm(x),lam)))*x
# http://proximity-operator.net/multivariatefunctions.html
# Fused Ridge objective
frobj = lambda b, lam1, lam2: 0.5*norm(y-X@b)**2 + \
lam1 * np.sum(np.square(b)) + lam2 * np.sum(np.square(b[1:]-b[:-1]))
S = []
# Lipschitz Constant Computation
if not a:
# if stepsize not given then compute the step size as 1/2 x max eigenvalue of X^T*X)
S = X.T@X
evals = np.linalg.eigvals(S)
L = np.max(np.real(evals))
# Fix the S being all zero matrix (Feb.7th, XJW)
if L < 1e-10:
return b_init, [], 1
a = 1./(2*L)
# Initialization
b_old = b_init.copy()
b_hist = []
# This is update using b <- prox(t*c + S*b)
c = X.T@y
if len(S)==0:
S = X.T@X
S = np.eye(X.shape[1]) - a*(S)
# Iteration Starts Here
for i in range(max_iter):
if lam2 == 0: # LASSO
b = prox_l2(a*c + S@b_old, a*lam1)
else: # Fused LASSO
b = prox_l2(ptv.tv2_1d(a*c + S@b_old,a*lam2).reshape(-1,1),a*lam1)
if nonneg == 1: # Nonnegativity Proximal Opreator
b = np.clip(b, a_min=0, a_max=None)
b_hist.append(b)
# Stopping Criteria; fixed the problem of “b” being all zeros (Feb.7th, XJW)
if norm(b) < 1e-10:
err = 0.5*delta
else:
err = norm(b_old-b)/norm(b)
if print_iter:
objval = frobj(b,lam1,lam2)
print("iter {:2d}: error = {:.6f} obj. function = {:.7f}".format(i,err,objval))
if err < delta:
objval = frobj(b,lam1,lam2)
#print("converged: iteration {:2d}: error = {:.4f} obj. function = {:.7f}".format(i,err,objval))
return b, b_hist, i
b_old = b
return b, b_hist, i
''' --- Gradient Descent for LS ---'''
# @jit(nopython=True)
def gd_LS(y, X, b_init=[], nonneg = 0, ifeig = 1, delta=1e-4, max_iter=5000, print_iter = False):
'''
Gradient Descent for Least Square (approximation)
inputs:
y, X N x 1 vector of responses and N x p matrix of predictors
b_init initial value to start the iteration (p x 1 vector)
nonneg nonnegative LS estimation, only for providing a nonneg start for nnFL, nnFR...
ifeig flag for computing exact eigendecompostion or using trace instead
delta termination threshold
max_iter maximum count of iterations
print_iter boolean (True / False) for printing or not printing information.
f(b) = 1/2 * || y - X*b ||^2
---
1st version, modified by XJ.W, Mar. 16, 2023
'''
flsobj = lambda b: 0.5*norm(y-X@b)**2 # Least Square objective
# Lipschitz Constant Computation
S = X.T@X
c = X.T@y
if ifeig == 1:
evals = np.linalg.eigvals(S)
a = 1./np.max(np.real(evals))
else:
a = 1./np.trace(S)
if len(b_init) == 0:
b_init = np.random.randn(*c.shape)
# Initialization
b_old = b_init.copy()
b_hist = []
# This is update using b <- prox(t*c + S*b)
S = np.eye(X.shape[1]) - a*(S)
# Iteration Starts Here
for i in range(max_iter):
b = a*c + S@b_old
if nonneg == 1: # Nonnegativity Proximal Opreator
b = np.clip(b, a_min=0, a_max=None)
b_hist.append(b)
# Stopping Criteria; fixed the problem of “b” being all zeros (Feb.7th, XJW)
if norm(b) < 1e-10:
err = 0.5*delta
else:
err = norm(b_old-b)/norm(b)
if print_iter:
objval = flsobj(b)
print("iter {:2d}: error = {:.6f} obj. function = {:.7f}".format(i,err,objval))
if err < delta:
objval = flsobj(b)
return b, b_hist, i
b_old = b
return b, b_hist, i
# --- Miscellaneous Functions ---
'''
Function: Adding noise using target SNR
'''
# @jit(nopython=True)
def AWGN(x_volts, target_snr_db):
'''
Add white Gaussian noise to a pure signal
Parameters
----------
x_volts: pure signal
target_snr_db: Target SNR / dB
Returns
-------
y_volts: signal added with white Gaussian noise with Target SNR!
'''
x_volts = x_volts.squeeze()
x_watts = x_volts ** 2
sig_avg_watts = np.mean(x_watts)
sig_avg_db = 10 * np.log10(sig_avg_watts)
noise_avg_db = sig_avg_db - target_snr_db
noise_avg_watts = 10 ** (noise_avg_db / 10)
noise_volts = np.random.normal(0, np.sqrt(noise_avg_watts), len(x_watts))
y_volts = x_volts + noise_volts
return y_volts