-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathflying_things_dataset.py
104 lines (87 loc) · 3.42 KB
/
flying_things_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
'''
Provider for duck dataset from xingyu liu
'''
import os
import os.path
import json
import numpy as np
import sys
import pickle
import glob
class SceneflowDataset():
def __init__(self, root='data_preprocessing/data_processed_maxcut_35_both_mask_20k_2k', npoints=2048, train=True):
self.npoints = npoints
self.train = train
self.root = root
if self.train:
self.datapath = glob.glob(os.path.join(self.root, 'TRAIN*.npz'))
else:
self.datapath = glob.glob(os.path.join(self.root, 'TEST*.npz'))
self.cache = {}
self.cache_size = 30000
###### deal with one bad datapoint with nan value
self.datapath = [d for d in self.datapath if 'TRAIN_C_0140_left_0006-0' not in d]
######
def __getitem__(self, index):
if index in self.cache:
pos1, pos2, color1, color2, flow, mask1 = self.cache[index]
else:
fn = self.datapath[index]
with open(fn, 'rb') as fp:
data = np.load(fp)
pos1 = data['points1']
pos2 = data['points2']
color1 = data['color1'] / 255
color2 = data['color2'] / 255
flow = data['flow']
mask1 = data['valid_mask1']
if len(self.cache) < self.cache_size:
self.cache[index] = (pos1, pos2, color1, color2, flow, mask1)
if self.train:
n1 = pos1.shape[0]
sample_idx1 = np.random.choice(n1, self.npoints, replace=False)
n2 = pos2.shape[0]
sample_idx2 = np.random.choice(n2, self.npoints, replace=False)
pos1_ = np.copy(pos1[sample_idx1, :])
pos2_ = np.copy(pos2[sample_idx2, :])
color1_ = np.copy(color1[sample_idx1, :])
color2_ = np.copy(color2[sample_idx2, :])
flow_ = np.copy(flow[sample_idx1, :])
mask1_ = np.copy(mask1[sample_idx1])
else:
pos1_ = np.copy(pos1[:self.npoints, :])
pos2_ = np.copy(pos2[:self.npoints, :])
color1_ = np.copy(color1[:self.npoints, :])
color2_ = np.copy(color2[:self.npoints, :])
flow_ = np.copy(flow[:self.npoints, :])
mask1_ = np.copy(mask1[:self.npoints])
return pos1_, pos2_, color1_, color2_, flow_, mask1_
def __len__(self):
return len(self.datapath)
if __name__ == '__main__':
# import mayavi.mlab as mlab
d = SceneflowDataset(npoints=2048)
print(len(d))
import time
tic = time.time()
for i in range(100):
pc1, pc2, c1, c2, flow, m1, m2 = d[i]
print(pc1.shape)
print(pc2.shape)
print(flow.shape)
print(np.sum(m1))
print(np.sum(m2))
pc1_m1 = pc1[m1==1,:]
pc1_m1_n = pc1[m1==0,:]
print(pc1_m1.shape)
print(pc1_m1_n.shape)
mlab.points3d(pc1_m1[:,0], pc1_m1[:,1], pc1_m1[:,2], scale_factor=0.05, color=(1,0,0))
mlab.points3d(pc1_m1_n[:,0], pc1_m1_n[:,1], pc1_m1_n[:,2], scale_factor=0.05, color=(0,1,0))
raw_input()
mlab.points3d(pc1[:,0], pc1[:,1], pc1[:,2], scale_factor=0.05, color=(1,0,0))
mlab.points3d(pc2[:,0], pc2[:,1], pc2[:,2], scale_factor=0.05, color=(0,1,0))
raw_input()
mlab.quiver3d(pc1[:,0], pc1[:,1], pc1[:,2], flow[:,0], flow[:,1], flow[:,2], scale_factor=1)
raw_input()
print(time.time() - tic)
print(pc1.shape, type(pc1))