-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
58 lines (42 loc) · 1.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
from PIL import Image
import numpy as np
import cv2
import pickle
base_dir= os.path.dirname(os.path.abspath(__file__))
image_dir= os.path.join(base_dir, "images")
face_cascade = cv2.CascadeClassifier('data/haarcascade_frontalface_alt2.xml')
recognizer = cv2.face.LBPHFaceRecognizer_create()
current_id=0
label_ids={}
y_labels=[]
x_train=[]
for root,dirs, files in os.walk(image_dir):
for file in files:
if file.endswith("png") or file.endswith("jpg"):
path = os.path.join(root, file)
label = os.path.basename(os.path.dirname(path)).replace(" ", "-").lower()
#print(label, path)
if not label in label_ids:
label_ids[label]=current_id
current_id+= 1
id_=label_ids[label]
print(label_ids)
#y_labels.append(label)
#x_train.append(path)
pil_image= Image.open(path).convert("L")
size=(550, 550)
final_image=pil_image.resize(size, Image.ANTIALIAS)
image_array = np.array(final_image,"uint8")
#print(image_array)
faces = face_cascade.detectMultiScale(image_array, scaleFactor=1.3, minNeighbors=5)
for(x,y,w,h) in faces:
roi=image_array[y:y+h, x:x+w]
x_train.append(roi)
y_labels.append(id_)
#print(y_labels)
#print(x_train)
with open("labels.pickle", 'wb') as f:
pickle.dump(label_ids, f)
recognizer.train(x_train, np.array(y_labels))
recognizer.save("trainner.yml")