-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
306 lines (253 loc) · 12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import argparse
import glob
from pathlib import Path
from collections import Counter
import torchvision.transforms as transforms
import data_aug.loader
import torch
import time
import torch.nn as nn
from datasets import ClusterDataset
from utils import *
import os
from models import cluster_projector
import csv
import numpy as np
import torch.nn.functional as F
import json
parser = argparse.ArgumentParser(description="PyTorch Pre-training")
# Model and training settings
parser.add_argument("--model_type", default="clusiam", choices=["clusiam", "clubyol"], help="Model type to train")
parser.add_argument("--num_clusters", default=100, type=int, help="Number of clusters")
parser.add_argument("--feat_size", default=2048, type=int, help="Feature size")
parser.add_argument("--epochs", default=50, type=int, help="Total number of epochs for training")
parser.add_argument("--alpha", default=0.5, type=float, help="Alpha value for loss calculation")
# Optimizer settings
parser.add_argument("--lr", default=0.05, type=float, help="Learning rate")
parser.add_argument("--weight_decay", default=1e-4, type=float, help="Weight decay for optimizer")
parser.add_argument("--momentum", default=0.9, type=float, help="Momentum for optimizer")
parser.add_argument("--fix_pred_lr", action="store_true", help="Fix predictor learning rate")
# Data loading settings
parser.add_argument("--batch_size", default=512, type=int, help="Batch size for training")
parser.add_argument("--num_worker", default=8, type=int, help="Number of workers for data loading")
parser.add_argument("--eps", default=1e-8, type=float, help="Epsilon value for calculations")
# Logging and saving
parser.add_argument("--print_freq", default=10, type=int, help="Print frequency")
parser.add_argument("--save_freq", default=10, type=int, help="Save frequency")
parser.add_argument("--save_path", default=None, type=str, help="Path to save the model")
parser.add_argument("--log_dst", default=None, type=str, help="Destination for logs")
parser.add_argument("--resume", default=False, type=bool, help="Resume training from checkpoint")
parser.add_argument("train_path", metavar="DIR", help="path to dataset")
def main():
args = parser.parse_args()
train_dir = args.train_path
stats_file = 'dataset_stats.json'
try:
with open(stats_file, 'r') as file:
stats = json.load(file)
except (FileNotFoundError, json.JSONDecodeError):
stats = {}
with open(stats_file, 'w') as file:
json.dump(stats, file)
if train_dir in stats:
NORMALIZATION_MEAN, NORMALIZATION_STD = stats[train_dir]['mean'], stats[train_dir]['std']
else:
stat_computer = DatasetStatsComputer(train_dir)
NORMALIZATION_MEAN, NORMALIZATION_STD = stat_computer.compute()
NORMALIZATION_MEAN = NORMALIZATION_MEAN.tolist()
NORMALIZATION_STD = NORMALIZATION_STD.tolist()
stats[train_dir] = {'mean': NORMALIZATION_MEAN, 'std': NORMALIZATION_STD}
with open(stats_file, 'w') as file:
json.dump(stats, file)
train_dir = Path(train_dir)
# Constants
# NORMALIZATION_MEAN = [0.6684, 0.5115, 0.6791]
# NORMALIZATION_STD = [0.2521, 0.2875, 0.2100]
# Data augmentation and normalization
normalize = transforms.Normalize(mean=NORMALIZATION_MEAN, std=NORMALIZATION_STD)
augmentation = [
transforms.RandomResizedCrop(224, scale=(0.2, 1.0)),
transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([data_aug.loader.GaussianBlur([0.1, 2.0])], p=0.5),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]
# Dataset preparation
os.makedirs(os.path.dirname(args.log_dst), exist_ok=True)
train_dir_temp = train_dir.joinpath("*", "*", "*.png")
patch_list = glob.glob(str(train_dir_temp))
train_dataset = ClusterDataset.PathData(patch_list, data_aug.loader.TwoCropsTransform(transforms.Compose(augmentation)))
# Model initialization
if args.model_type == "clusiam":
model = cluster_projector.Cluster_SimSiam(out_dim=args.feat_size, target_dim=args.num_clusters)
elif args.model_type == "clubyol":
model = cluster_projector.Cluster_BYOL(out_dim=args.feat_size, hidden_dim=4096, target_dim=args.num_clusters)
args.fix_pred_lr = False
model.cuda()
# Optimizer settings
init_lr = args.lr * args.batch_size / 256
criterion = nn.CosineSimilarity(dim=1).cuda()
def save_checkpoint(state, filename="checkpoint.pth.tar"):
os.makedirs(os.path.dirname(filename), exist_ok=True)
torch.save(state, filename)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=":f"):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, log_dst=None, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
self.log_dst = log_dst
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print("\t".join(entries))
def write_log(self, batch):
with open(self.log_dst + ".csv", "a", newline="") as csvfile:
writer = csv.writer(csvfile)
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [meter.avg for meter in self.meters]
writer.writerow(entries)
csvfile.close()
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = "{:" + str(num_digits) + "d}"
return "[" + fmt + "/" + fmt.format(num_batches) + "]"
# Optimizer parameters based on fix_pred_lr setting
if args.fix_pred_lr:
optim_params = [
{"params": model.encoder.parameters(), "fix_lr": False},
{"params": model.cluster_projector.parameters(), "fix_lr": False},
{"params": model.cluster_assigner.parameters(), "fix_lr": False},
{"params": model.predictor.parameters(), "fix_lr": True},
]
else:
optim_params = model.parameters()
# Initialize optimizer
optimizer = torch.optim.SGD(
optim_params, init_lr, momentum=args.momentum, weight_decay=args.weight_decay
)
# Checkpoint loading logic
start_epoch = 0
if args.resume:
if os.path.isfile(args.resume):
print(f"=> loading checkpoint '{args.resume}'")
checkpoint = torch.load(args.resume)
start_epoch = checkpoint["epoch"]
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
print(f"=> loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})")
else:
print(f"=> no checkpoint found at '{args.resume}'")
# Initialize data loader
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_worker,
pin_memory=True,
drop_last=True,
)
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter("Time", ":6.3f")
data_time = AverageMeter("Data", ":6.3f")
losses = AverageMeter("Loss", ":.4f")
contras_losses = AverageMeter("Contras", ":.4f")
cluster_losses = AverageMeter("Cluster", ":.4f")
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, contras_losses, cluster_losses],
prefix="Epoch: [{}]".format(epoch),
log_dst=args.log_dst,
)
# switch to train mode
model.train()
end = time.time()
for i, images in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
images[0] = images[0].cuda(non_blocking=True)
images[1] = images[1].cuda(non_blocking=True)
if args.model_type == "clusiam":
z, p, c, a = model(x1=images[0], x2=images[1])
contrastive_loss = -(criterion(p[0], z[1].detach()).mean() + criterion(p[1], z[0].detach()).mean())# SimSiam
contrastive_loss *= (1 - args.alpha)
outer_similarity = final_cluster_similarity(torch.cat((z[0].detach(), z[1].detach()), 0), torch.cat((a[0], a[1]), 0), args.num_clusters, eps=args.eps)
cluster_loss = -(-outer_similarity) * args.alpha
elif args.model_type == "clubyol":
p, t, z, a = model(x1=images[0], x2=images[1])
p1, p2 = p
t1, t2 = t
contrastive_loss = (1- 1 * (F.cosine_similarity(p1, t2.detach(), dim=-1)).mean() + 1 - 1 * (F.cosine_similarity(p2, t1.detach(), dim=-1)).mean())# BYOL
contrastive_loss *= (1 - args.alpha)
outer_similarity = final_cluster_similarity(torch.cat((z[0].detach(), z[1].detach()), 0), torch.cat((a[0], a[1]), 0), args.num_clusters, eps=args.eps)
cluster_loss = -(-outer_similarity) * args.alpha
loss = cluster_loss + contrastive_loss
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
if args.model_type == "clubyol":
model.momentum_update()
contras_losses.update(contrastive_loss.item(), images[0].size(0))
cluster_losses.update(cluster_loss.item(), images[0].size(0))
losses.update(loss.item(), images[0].size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
# Calculate online counter
concatenated_assignments = torch.cat((a[0], a[1]), 0).detach().cpu().numpy()
online_counter = Counter(np.argmax(concatenated_assignments, axis=1))
# Calculate gumbel valids
concatenated_assignments_tensor = torch.tensor(concatenated_assignments)
gumbel_softmax_values = F.gumbel_softmax(concatenated_assignments_tensor, hard=False).detach().cpu().numpy()
gumbel_valids = len(Counter(np.argmax(gumbel_softmax_values, axis=1)))
# Print statistics
if len(online_counter) > 12:
print(len(online_counter), gumbel_valids)
else:
print(len(online_counter), gumbel_valids, online_counter)
progress.write_log(i)
for epoch in range(start_epoch, args.epochs):
adjust_learning_rate(optimizer, init_lr, epoch, args.epochs)
train(train_loader, model, criterion, optimizer, epoch)
if (epoch + 1) % args.save_freq == 0:
save_checkpoint(
{
"epoch": epoch + 1,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
},
filename="{}_{}.pth.tar".format(args.save_path, epoch),
)
save_checkpoint(
{
"epoch": epoch + 1,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
},
filename="{}_last.pth.tar".format(args.save_path),
)
if __name__ == "__main__":
main()