-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathMPIIO.cc
988 lines (931 loc) · 36.2 KB
/
MPIIO.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
// Import necessary stuff
#include "MPIIO.h"
#include <cstdlib> // To get the exit function
#include <iostream>
/* -----------------------------------------------------------------------------
Authors: Niels Aage, Erik Andreassen, Boyan Lazarov, August 2013
Updated: June 2019, Niels Aage
Copyright (C) 2013-2019,
This MPIIO implementation is licensed under Version 2.1 of the GNU
Lesser General Public License.
This MMA implementation is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This Module is distributed in the hope that it will be useful,implementation
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this Module; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
-------------------------------------------------------------------------- */
/*
* Modified by Zhidong Brian Zhang in May 2020, University of Waterloo
*/
// Constructor
#define _NO_SUCH_FILE 35
MPIIO::MPIIO (DM da_nodes, int nPf, std::string pnames, int nCf, std::string cnames) {
// User defined string
std::string infoString = "TopOpt result version 1.1";
// Maximum number of points per element
#if DIM == 2 // # new
int nPEl = 4; // 2D includes 4 nodes per element
#elif DIM == 3
int nPEl = 8;
#endif
// Number of domains (where domain refers to different regions in the
// optimization)
const int nDom = 1;
// Number of point fields per domain:
int nPFields[nDom] = { nPf };
// The names of the point fields
std::string pFieldNames = pnames;
// Number of cell (element) fields per domain:
int nCFields[nDom] = { nCf };
// The names of the cell fields
std::string cFieldNames = cnames;
// Points/cells in each of the domains:
nPointsMyrank = new unsigned long int[nDom];
nCellsMyrank = new unsigned long int[nDom];
// ----------------- Get the mesh: -------------------
// Coordinates and a pointer
Vec coordinates;
PetscScalar *coordinatesPointer;
// Get coordinates in local node numbering (including ghosts)
DMGetCoordinatesLocal (da_nodes, &coordinates);
VecGetArray (coordinates, &coordinatesPointer);
// Get the global dof number (and ghosts)
PetscInt nn;
VecGetSize (coordinates, &nn);
// Get the FE mesh structure (from the nodal mesh)
PetscInt nel, nen;
const PetscInt *necon;
#if DIM == 2 // # new
DMDAGetElements_2D (da_nodes, &nel, &nen, &necon);
#elif DIM == 3
DMDAGetElements_3D (da_nodes, &nel, &nen, &necon);
#endif
// Number of points/cells in each domain for this rank
#if DIM == 2 // # new
PetscInt numnodaldof = 2;
#elif DIM == 3
PetscInt numnodaldof = 3;
#endif
nPointsMyrank[0] = nn / numnodaldof;
nCellsMyrank[0] = nel; // We have this number from when we called DMDAGetElements_2D/DMDAGetElements_3D
// --------- Allocate the output object: -------
Allocate (infoString, nDom, nPFields, nCFields, nPointsMyrank, nCellsMyrank, nPEl, pFieldNames, cFieldNames);
// Write the points (or coordinates of the points)
float *pointsDomain0 = new float[3 * nPointsMyrank[0]]; // always use "3" because point data in VTK All point data must use 3 coordinates
#if DIM == 2 // # new
for (unsigned long int i = 0; i < nPointsMyrank[0]; i++) { // 2D
// Convert to single precission to save space
pointsDomain0[3 * i] = float (coordinatesPointer[DIM * i]);
pointsDomain0[3 * i + 1] = float (coordinatesPointer[DIM * i + 1]);
pointsDomain0[3 * i + 2] = float (0.0);
}
#elif DIM == 3
for (unsigned long int i = 0; i < 3 * nPointsMyrank[0]; i++) {
// Convert to single precission to save space
pointsDomain0[i] = float (coordinatesPointer[i]);
}
#endif
writePoints (0, pointsDomain0);
// Restore coordinates array
VecRestoreArray (coordinates, &coordinatesPointer);
// Run through the elements of the domain (we have already called
// DMDAGetElements)
unsigned long int *cellsDomain0 = new unsigned long int[nPEl * nCellsMyrank[0]];
unsigned long int *cellsOffset0 = new unsigned long int[nCellsMyrank[0]];
unsigned long int *cellsTypes0 = new unsigned long int[nCellsMyrank[0]];
unsigned long int CellOffset = 0;
for (unsigned long int i = 0; i < nCellsMyrank[0]; i++) {
#if DIM == 2 // # new
// Element type is the first number outputted:
if (nen == 4) { // QUAD element
cellsTypes0[i] = 9; // (in vtk QUAD element type is 9), http://victorsndvg.github.io/FEconv/formats/vtk.xhtml
}
// Then run through the nodes
for (int j = 0; j < nen; j++) {
cellsDomain0[i * nPEl + j] = necon[i * nen + j];
}
// Create the offset
if (nen == 4) { // Quad element
CellOffset += nen;
cellsOffset0[i] = CellOffset; // (in vtk Quad element type is 9)
}
// Finally, in case we have varying elements size, make sure the extra nodes
// are put to zero
// REMARK: This is only an example, and is never used in this implementation
for (int j = 4; j < nPEl; j++) {
cellsDomain0[i * (nPEl + 1) + j + 1] = 0;
}
#elif DIM == 3
// Element type is the first number outputted:
if (nen == 8) { // Hex element
cellsTypes0[i] = 12; // (in vtk hex element type is 12)
}
// Then run through the nodes
for (int j = 0; j < nen; j++) {
cellsDomain0[i * nPEl + j] = necon[i * nen + j];
}
// Create the offset
if (nen == 8) { // Hex element
CellOffset += nen;
cellsOffset0[i] = CellOffset; // (in vtk hex element type is 12)
}
// Finally, in case we have varying elements size, make sure the extra nodes
// are put to zero
// REMARK: This is only an example, and is never used in this implementation
for (int j = 8; j < nPEl; j++) {
cellsDomain0[i * (nPEl + 1) + j + 1] = 0;
}
#endif
}
writeCells (0, cellsDomain0, cellsOffset0, cellsTypes0); // First domain
// Allocate working arrays for outputting fields from timesteps:
workPointField = new float[nPointsMyrank[0] * nPFields[0]]; // For first domain
workCellField = new float[nCellsMyrank[0] * nCFields[0]]; // For first domain
delete[] pointsDomain0;
delete[] cellsDomain0;
delete[] cellsOffset0;
delete[] cellsTypes0;
}
// Destructor
MPIIO::~MPIIO () {
// Delete the allocated arrays
delete[] workPointField;
delete[] workCellField;
delete[] nPointsMyrank;
delete[] nCellsMyrank;
delete[] nPoints;
delete[] nCells;
delete[] nPointsT;
delete[] nCellsT;
delete[] nPFields;
delete[] nCFields;
}
PetscErrorCode MPIIO::WriteVTK (DM da_nodes, Vec U, Vec nodeDensity, Vec x, Vec xTilde, Vec xPhys, Vec xPassive0, Vec xPassive1,Vec xPassive2, Vec xPassive3, PetscInt itr) {
// Here we only have one "timestep" (no optimization)
unsigned long int timestep = itr;
PetscErrorCode ierr;
// POINT FIELD(S)
// Displacement
Vec Ulocal;
DMCreateLocalVector (da_nodes, &Ulocal);
ierr = VecSet (Ulocal, 0.0);
CHKERRQ(ierr);
// Update the local vector from global solution
ierr = DMGlobalToLocalBegin (da_nodes, U, INSERT_VALUES, Ulocal);
CHKERRQ(ierr);
ierr = DMGlobalToLocalEnd (da_nodes, U, INSERT_VALUES, Ulocal);
CHKERRQ(ierr);
// We need a pointer to the local vector
PetscScalar *UlocalPointer;
ierr = VecGetArray (Ulocal, &UlocalPointer);
CHKERRQ(ierr);
// Node density
Vec NDlocal;
DMCreateLocalVector (da_nodes, &NDlocal);
ierr = VecSet (NDlocal, 0.0);
CHKERRQ(ierr);
// Update the local vector from global solution
ierr = DMGlobalToLocalBegin (da_nodes, nodeDensity, INSERT_VALUES, NDlocal);
CHKERRQ(ierr);
ierr = DMGlobalToLocalEnd (da_nodes, nodeDensity, INSERT_VALUES, NDlocal);
CHKERRQ(ierr);
// We need a pointer to the local vector
PetscScalar *NDlocalPointer;
ierr = VecGetArray (NDlocal, &NDlocalPointer);
CHKERRQ(ierr);
#if PHYSICS == 0 || PHYSICS == 1
for (unsigned long int i = 0; i < nPointsMyrank[0]; i++) {
// Ux
workPointField[i] = float (UlocalPointer[DIM * i]);
// Uy
workPointField[i + nPointsMyrank[0]] = float (UlocalPointer[DIM * i + 1]);
#if DIM == 2 // # new
// Uz fake, because all point data must use 3 coordinates in VTK files
workPointField[i + 2 * nPointsMyrank[0]] = float (0.0);
#elif DIM == 3
// Uz
workPointField[i + 2 * nPointsMyrank[0]] = float (UlocalPointer[DIM * i + 2]);
#endif
// Node density
workPointField[i + 3 * nPointsMyrank[0]] = float (NDlocalPointer[DIM * i]);
}
#elif PHYSICS == 2 // # new
for (unsigned long int i = 0; i < nPointsMyrank[0]; i++) {
// Ux
workPointField[i] = float (UlocalPointer[i]);
// Uy
workPointField[i + nPointsMyrank[0]] = float (0.0);
#if DIM == 2
// Uz fake, because all point data must use 3 coordinates in VTK files
workPointField[i + 2 * nPointsMyrank[0]] = float (0.0);
#elif DIM == 3
// Uz
workPointField[i + 2 * nPointsMyrank[0]] = float (0.0);
#endif
// Node density
workPointField[i + 3 * nPointsMyrank[0]] = float (NDlocalPointer[i]);
}
#endif
writePointFields (timestep, 0, workPointField);
// Restore Ulocal array
ierr = VecRestoreArray (Ulocal, &UlocalPointer);
CHKERRQ(ierr);
ierr = VecRestoreArray (NDlocal, &NDlocalPointer);
CHKERRQ(ierr);
// CELL FIELD(S)
PetscScalar *xpp, *xp, *xt;
VecGetArray (x, &xp);
VecGetArray (xTilde, &xt);
VecGetArray (xPhys, &xpp);
PetscScalar *xPassive0p, *xPassive1p, *xPassive2p, *xPassive3p; // # new
VecGetArray (xPassive0, &xPassive0p); // # new
VecGetArray (xPassive1, &xPassive1p); // # new
VecGetArray (xPassive2, &xPassive2p); // # new
VecGetArray (xPassive3, &xPassive3p); // # new
for (unsigned long int i = 0; i < nCellsMyrank[0]; i++) { // 2D/3D use the same code for cell field
// Density
workCellField[i + 0 * nCellsMyrank[0]] = float (xp[i]);
workCellField[i + 1 * nCellsMyrank[0]] = float (xt[i]);
workCellField[i + 2 * nCellsMyrank[0]] = float (xpp[i]);
workCellField[i + 3 * nCellsMyrank[0]] = float (xPassive0p[i]); // # new
workCellField[i + 4 * nCellsMyrank[0]] = float (xPassive1p[i]); // # new
workCellField[i + 5 * nCellsMyrank[0]] = float (xPassive2p[i]); // # new
workCellField[i + 6 * nCellsMyrank[0]] = float (xPassive3p[i]); // # new
}
writeCellFields (0, workCellField);
// Restore arrays
VecRestoreArray (x, &xp);
VecRestoreArray (xTilde, &xt);
VecRestoreArray (xPhys, &xpp);
VecRestoreArray (xPassive0, &xPassive0p); // # new
VecRestoreArray (xPassive1, &xPassive1p); // # new
VecRestoreArray (xPassive2, &xPassive2p); // # new
VecRestoreArray (xPassive3, &xPassive3p); // # new
// clean up
ierr = VecDestroy (&Ulocal);
CHKERRQ(ierr);
ierr = VecDestroy (&NDlocal); // # new
CHKERRQ(ierr); // # new
return ierr;
}
void MPIIO::Allocate (std::string info, const int nDom, const int nPFields[],
const int nCFields[], unsigned long int nPointsMyrank[],
unsigned long int nCellsMyrank[], unsigned long int nodesPerElement,
std::string pFNames, std::string cFNames) //, std::string filename)
/* info = string with user defined info
nDom = number of domains
nPFields = array with number of point fields in each domain (the number
we want to write) pFNames = string with point field names nCFields = array
with number of cell fields in each domain (the number we want to write)
cFNames = string with cell field names
nPointsMyrank = array with number of points in each domain in
thread=Myrank nCellsMyrank = array with number of cells in each domain in
thread=Myrank nodesPerElement = (max) number of nodes per element. filename =
name of output file (default = "output.dat")
*/
{
// default name
std::string filename = "output_00000.dat";
// Check PETSc input for a work directory
char filenameChar[PETSC_MAX_PATH_LEN];
PetscBool flg = PETSC_FALSE;
PetscOptionsGetString (NULL, NULL, "-workdir", filenameChar,
sizeof(filenameChar), &flg);
// If input, change path of the file in filename
if (flg) {
filename = "";
filename.append (filenameChar);
filename.append ("/output.dat");
}
PetscPrintf (PETSC_COMM_WORLD,
"##############################################"
"##########################\n");
PetscPrintf (MPI_COMM_WORLD, "Outputfile is written to: %s \n",
filename.c_str ());
PetscPrintf (MPI_COMM_WORLD,
"To change the working directory, specify '-workdir' at runtime\n");
// Continue to allocate
firstFieldOutputDone = false; // Initialize
this->filename = filename;
int ierror;
int headerLen;
MPI_File fh; // File handle
// Find how many bytes are used to store an unsigned long integer
MPI_Type_size (MPI_UNSIGNED_LONG, &MPI_IS);
// Bytes used to store a float
MPI_Type_size (MPI_FLOAT, &MPI_FS);
// Bytes used to store a char
MPI_Type_size (MPI_CHAR, &MPI_CS);
// Find out how many cpus we have and their ranks
ierror = MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (ierror) {
abort ("Problems getting rank", "MPIIO:MPIIO");
}
ierror = MPI_Comm_size (MPI_COMM_WORLD, &ncpu);
if (ierror) {
abort ("Problems getting number of cpus", "MPIIO:MPIIO");
}
// Communicate number of points and cells to all processors
// First allocate space for the arrays
// Check how many domains your trying to allocate (to avoid crash)
if (nDom > 1000) {
abort ("ERROR: More than 1000 domains!", "MPIIO:MPIIO");
}
nPoints = new unsigned long int[nDom * ncpu];
nCells = new unsigned long int[nDom * ncpu];
for (int i = 0; i < nDom; i++) {
ierror = MPI_Allgather(&nPointsMyrank[i], 1, MPI_UNSIGNED_LONG,
&nPoints[i * ncpu], 1, MPI_UNSIGNED_LONG, MPI_COMM_WORLD);
if (ierror) {
abort ("Problems exchanging number of points", "MPIIO:MPIIO");
}
ierror = MPI_Allgather(&nCellsMyrank[i], 1, MPI_UNSIGNED_LONG,
&nCells[i * ncpu], 1, MPI_UNSIGNED_LONG, MPI_COMM_WORLD);
if (ierror) {
abort ("Problems exchanging number of cells", "MPIIO:MPIIO");
}
}
// Also allocate and save the other data provided
this->nDom = nDom;
this->nodesPerElement = nodesPerElement;
this->nPFields = new int[nDom];
this->nCFields = new int[nDom];
this->nPointsT = new unsigned long int[nDom]; // Total number of points
this->nCellsT = new unsigned long int[nDom]; // Total number of cells
// All processors position in the file is moved below the outputted data
headerLen = 2 + 4 * nDom;
unsigned long int *header = new unsigned long int[headerLen];
// Put the number of domains into the buffer
header[0] = nDom;
for (int i = 0; i < nDom; i++) {
// Sum up total number of points and cells in the domain
header[1 + i] = 0;
header[1 + nDom + i] = 0;
for (int j = 0; j < ncpu; j++) {
header[1 + i] += nPoints[i * ncpu + j];
header[1 + nDom + i] += nCells[i * ncpu + j];
}
nPointsT[i] = header[1 + i];
nCellsT[i] = header[1 + nDom + i];
// And then the number of point/cell fields in each domain
header[1 + 2 * nDom + i] = nPFields[i];
header[1 + 3 * nDom + i] = nCFields[i];
this->nPFields[i] = nPFields[i];
this->nCFields[i] = nCFields[i];
}
// Last entry is the nodes per element
header[headerLen - 1] = nodesPerElement;
// Save the number of characters to output
int numberOfCharacters = info.size () + pFNames.size () + cFNames.size () + 4;
// The first processor outputs total number of points, cells, and fields
if (rank == 0) { // Can this part be done as standard C++ binary output?
// If there is an old file, delete this
ierror = MPI_File_delete (&filename[0], MPI_INFO_NULL);
// The below line is commented since it caused errors with some MPI
// implementations
// if (ierror != _NO_SUCH_FILE && ierror) {abort("Problems deleting old
// file", "MPIIO:MPIIO");}
// Then open file
ierror = MPI_File_open (MPI_COMM_SELF, &filename[0],
MPI_MODE_CREATE | MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
if (ierror) {
abort ("Problems opening file", "MPIIO::MPIIO");
}
// No need to create filetype here, its just a buffer with integers
offset = 0; // Start at the beginning of the file
// Set view
ierror = MPI_File_set_view (fh, offset, MPI_CHAR, MPI_CHAR,
(char*) "native", MPI_INFO_NULL);
if (ierror) {
abort ("Problems setting view", "MPIIO::MPIIO");
}
// Write to the file
info.append ("\n\x01"); // Make sure the string ends with an endline
ierror = MPI_File_write (fh, (char*) info.c_str (), info.size (), MPI_CHAR,
MPI_STATUS_IGNORE);
if (ierror) {
abort ("Problems writing to file", "MPIIO::MPIIO");
}
// Set view
offset += MPI_CS * info.size (); // Adjust offset
ierror = MPI_File_set_view (fh, offset, MPI_UNSIGNED_LONG,
MPI_UNSIGNED_LONG, (char*) "native", MPI_INFO_NULL);
if (ierror) {
abort ("Problems setting view", "MPIIO::MPIIO");
}
// Write to the file
ierror = MPI_File_write (fh, header, headerLen, MPI_UNSIGNED_LONG,
MPI_STATUS_IGNORE);
if (ierror) {
abort ("Problems writing to file", "MPIIO::MPIIO");
}
// Set view
offset += MPI_IS * headerLen; // Adjust offset
ierror = MPI_File_set_view (fh, offset, MPI_CHAR, MPI_CHAR,
(char*) "native", MPI_INFO_NULL);
if (ierror) {
abort ("Problems setting view", "MPIIO::MPIIO");
}
// Write to the file
pFNames.append ("\x01"); // Make sure the string ends with an endline
cFNames.append ("\x01"); // Make sure the string ends with an endline
pFNames.append (cFNames); // Output both strings at once
// Write to the file
ierror = MPI_File_write (fh, (char*) pFNames.c_str (), pFNames.size (),
MPI_CHAR, MPI_STATUS_IGNORE);
// Close the file (I don't think we need a barrier here)
ierror = MPI_File_close (&fh);
if (ierror) {
abort ("Problems closing file", "MPIIO::MPIIO");
}
}
MPI_Barrier (MPI_COMM_WORLD);
// All processors position in the file is moved below the outputted data
offset = MPI_IS * headerLen + MPI_CS * numberOfCharacters;
// ALWAYS remember to deallocate:
delete[] header;
}
// Output coordinates - only done once
void MPIIO::writePoints (int domain, float coordinates[])
/*
domain = The domain number (not the name)
coordinates = An array with the coordinates
*/
{
int ierror;
// Open file
ierror = MPI_File_open (MPI_COMM_WORLD, &filename[0],
MPI_MODE_CREATE | MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
if (ierror) {
abort ("Problems opening file", "MPIIO::writePoints");
}
// Compute offset for the different processors
if (domain == 0) { // For the first domain sum up to the current position
offset += 3 * sum (nPoints, rank) * MPI_FS;
} else { // For the rest of the domains add the points written since last time
offset += 3 * sum (&nPoints[ncpu * (domain - 1) + rank], ncpu) * MPI_FS;
}
// Set view
ierror = MPI_File_set_view (fh, offset, MPI_FLOAT, MPI_FLOAT,
(char*) "native", MPI_INFO_NULL);
if (ierror) {
abort ("Problems setting view", "MPIIO::writePoints");
}
// Write to the file
int len = 3 * nPoints[domain * ncpu + rank]; // Number of floats to write
ierror = MPI_File_write_all (fh, coordinates, len, MPI_FLOAT,
MPI_STATUS_IGNORE);
if (ierror) {
abort ("Problems writing to file", "MPIIO::writePoints");
}
// Close the file (I don't think we need a barrier here)
ierror = MPI_File_close (&fh);
if (ierror) {
abort ("Problems closing file", "MPIIO::writePoints");
}
}
// Output cells - only done once
// You provide the elements with "local numbering" -
// the method will convert to "global numbering".
void MPIIO::writeCells (int domain, unsigned long int elements[],
unsigned long int cellsOffset0[], unsigned long int cellsTypes0[])
/*
domain = The domain number
elements = Array with node connectivities. It is assumed that
the node numbering is local in both domain and thread.
And that we want a an overall global numbering for all
domains.
Furthermore, every nodesPerElement number should be
an element type number.
*/
{
int ierror;
unsigned long int shift;
// Compute the shift number (from local to global node number)
// This is done by summing up all points outputted before the points in this
// domain from this rank
shift = sum (nPoints, ncpu * domain + rank);
// Run through all "elements" and make them global by adding "shift":
for (unsigned long int i = 0;
i < (nodesPerElement) * nCells[ncpu * domain + rank]; i++) {
// but shift all the nodes to global numbering
elements[i] += shift;
}
// Open file
ierror = MPI_File_open (MPI_COMM_WORLD, &filename[0],
MPI_MODE_CREATE | MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
if (ierror) {
abort ("Problems opening file", "MPIIO::writeCells");
}
// Compute offset FOR ELEMENT CONN for the different processors
if (domain == 0) { // For the first domain sum up to the current position
// First, add for the remaining points written
offset += 3 * sum (&nPoints[ncpu * (nDom - 1) + rank], ncpu - rank)
* MPI_FS;
// Then, add the cells
offset += (nodesPerElement) * sum (nCells, rank) * MPI_IS;
} else { // For the rest of the domains add the elements written since last
// time
offset += (nodesPerElement)
* sum (&nCells[ncpu * (domain - 1) + rank], ncpu)
* MPI_IS;
}
// Set view
ierror = MPI_File_set_view (fh, offset, MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG,
(char*) "native", MPI_INFO_NULL);
if (ierror) {
abort ("Problems setting view", "MPIIO::writeCells");
}
// Length of data stream to write
unsigned long int len = (nodesPerElement) * nCells[domain * ncpu + rank]; // Number of integers
// Write ELEMENT Conn to file
ierror = MPI_File_write_all (fh, elements, len, MPI_UNSIGNED_LONG,
MPI_STATUS_IGNORE);
if (ierror) {
abort ("Problems writing ELEMENTS to file", "MPIIO::writeCells");
}
// Write the VTK OFFSET
// Update the write offset
// First jump past ALL the connectivity
offset += (nodesPerElement)
* sum (&nCells[ncpu * (nDom - 1) + rank], ncpu - rank)
* MPI_IS;
// Next jump past the previous ranks offset list
offset += sum (nCells, rank) * MPI_IS;
unsigned long int addToOffsetList = nodesPerElement * sum (nCells, rank);
for (int i = 0; i < (int) nCells[ncpu * domain + rank]; i++) {
cellsOffset0[i] += addToOffsetList;
}
// Length of the offset to write
len = nCells[domain * ncpu + rank]; // Number of integers
// Move the offset in the file
ierror = MPI_File_set_view (fh, offset, MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG,
(char*) "native", MPI_INFO_NULL);
if (ierror) {
abort ("Problems setting view OFFSET", "MPIIO::writeCells");
}
// write the offset list
ierror = MPI_File_write_all (fh, cellsOffset0, len, MPI_UNSIGNED_LONG,
MPI_STATUS_IGNORE);
// Write the VTK ELEMENT TYPE
// First jump past ALL the offsets
offset += sum (&nCells[ncpu * (nDom - 1) + rank], ncpu - rank) * MPI_IS;
// Nextjump past the previous ranks type list
offset += sum (nCells, rank) * MPI_IS;
// Length of type list for this rank
len = nCells[domain * ncpu + rank]; // Number of integers
// Move the offset in the file
ierror = MPI_File_set_view (fh, offset, MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG,
(char*) "native", MPI_INFO_NULL);
// write the type list to file
ierror = MPI_File_write_all (fh, cellsTypes0, len, MPI_UNSIGNED_LONG,
MPI_STATUS_IGNORE);
// Close the file (I don't think we need a barrier here)
ierror = MPI_File_close (&fh);
if (ierror) {
abort ("Problems closing file", "MPIIO::writeCells");
}
}
// Output point fields
void MPIIO::writePointFields (unsigned long int timeStep, int domain,
float fields[], std::string newFilename)
// timeStep = integer specifying time step
// domain = domain number (integer, should always start at zero and increase by
// one) fields = array containing field values (for all fields, the fields come
// after each other),
// which means the user has to put the field values in an array
// before passing it to this method. This is done because, the entries have to be
// converted from double to single precision anyway, and then it does not matter
// that the user has to allocate an extra array and store the single precision
// values in this. Furthermore, it simplifies the MPI_IO commands.
// newFilename = optional argument with filename to the file you want to write
// NB: It is assumed that all domains are written to the same file
// and that they are always written in the same chronological order (this
// could be changed)
{
int ierror;
if (newFilename != "notDefined" && newFilename != filename) {
if (domain != 0) {
abort ("Only new filename when first domain!", "MPIIO::writePointFields");
}
filename = newFilename;
// Reset positions
offset = 0;
}
// Compute the offset
else if (domain == 0) {
if (!firstFieldOutputDone) {
// Add for the remaining elements written
offset += sum (&nCells[ncpu * (nDom - 1) + rank], ncpu - rank) * MPI_IS;
} else { // We have outputted fields earlier
// Add for the remaining cell field values written
offset += sum (&nCells[ncpu * (nDom - 1) + rank], ncpu - rank) * MPI_FS;
}
}
if (domain == 0) { // For the first domain sum up to the current position
// Add the point field values written by other ranks
offset += sum (nPoints, rank) * MPI_FS;
} else { // For the rest of the domains add the point field values written
// since last time
// From the previous domain
offset += sum (&nPoints[ncpu * (domain - 1) + rank], ncpu - rank) * MPI_FS;
// From the current domain (if rank != 0)
offset += sum (&nPoints[ncpu * domain], rank) * MPI_FS;
}
// If it is the first domain (domain=0), the timeStep should be written by
// rank 0 and all offsets should be increased by one
if (domain == 0) {
if (rank == 0) {
// abort(" --------- HERE---------------", "MPIIO::writePointFields");
ierror = MPI_File_open (MPI_COMM_SELF, &filename[0],
MPI_MODE_CREATE | MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
if (ierror) {
abort ("Problems opening file", "MPIIO::writePointFields");
}
// Set view
ierror = MPI_File_set_view (fh, offset, MPI_UNSIGNED_LONG,
MPI_UNSIGNED_LONG, (char*) "native", MPI_INFO_NULL);
if (ierror) {
abort ("Problems setting view", "MPIIO::writePointFields");
}
// Write to the file
ierror = MPI_File_write (fh, &timeStep, 1, MPI_UNSIGNED_LONG,
MPI_STATUS_IGNORE);
if (ierror) {
abort ("Problems writing to file", "MPIIO::writePointFields");
}
// Close the file
ierror = MPI_File_close (&fh);
if (ierror) {
abort ("Problems closing file", "MPIIO::writePointFields");
}
}
MPI_Barrier (MPI_COMM_WORLD);
// Increase all offsets by one integer:
offset += 1 * MPI_IS;
}
// MPI_Barrier(MPI_COMM_WORLD);
// Open the file
ierror = MPI_File_open (MPI_COMM_WORLD, &filename[0],
MPI_MODE_CREATE | MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
if (ierror) {
abort ("Problems opening file", "MPIIO::writePointFields");
}
// Set filetype
MPI_Datatype filetype;
// The number of points for the specified rank in this domain
int blocklength = nPoints[ncpu * domain + rank];
// The total number of points in the domain
int stride = nPointsT[domain];
// Number of blocks to write
int count = nPFields[domain];
ierror = MPI_Type_vector (count, blocklength, stride, MPI_FLOAT, &filetype);
if (ierror) {
abort ("Problems creating MPI vector", "MPIIO::writePointFields");
}
ierror = MPI_Type_commit (&filetype);
if (ierror) {
abort ("Problems creating filetype", "MPIIO::writePointFields");
}
// Set view
ierror = MPI_File_set_view (fh, offset, MPI_FLOAT, filetype, (char*) "native",
MPI_INFO_NULL);
if (ierror) {
abort ("Problems setting view", "MPIIO::writePointFields");
}
// Since the array fields contain all fields, we can output them all at once
// Remember: datatype specifies the layout in memory, while filetype specifies
// the layout in the file. They are both of the MPI_Datatype kind.
// Set datatype such that the access in memory is correct. In this case the
// field values are in the right order already, so no need to make a datatype.
// Write to the file (one datatype is written)
ierror = MPI_File_write_all (fh, fields, count * blocklength, MPI_FLOAT,
MPI_STATUS_IGNORE);
if (ierror) {
abort ("Problems writing to file", "MPIIO::writePointFields");
}
// Close the file
ierror = MPI_File_close (&fh);
if (ierror) {
abort ("Problems closing file", "MPIIO::writePointFields");
}
// Check if it was the first time this function has been called
if (!firstFieldOutputDone) {
firstFieldOutputDone = true;
}
// Free the memory used for filetype
ierror = MPI_Type_free (&filetype);
if (ierror) {
abort ("Problems freeing datatype", "MPIIO::writePointFields");
}
// Finally, update the offset to the beginning of the last field we wrote
offset += stride * (count - 1) * MPI_FS;
}
// Output cell fields
void MPIIO::writeCellFields (int domain, float fields[])
// timeStep = integer specifying time step
// domain = domain number
// fields = field values at cell points. Should contain all fields!
// NB: It is always assumed that cell fields are written to the same file as
// point fields
// and that all domains are written to the same file, and that point fields
// are called first
{
int ierror;
if (domain == 0) {
// First, add for the remaining points written
offset += sum (&nPoints[ncpu * (nDom - 1) + rank], ncpu - rank) * MPI_FS;
// Add the cell field values written by other ranks
offset += sum (nCells, rank) * MPI_FS;
} else { // For the rest of the domains add the cell field values written
// since last time
// From the previous domain
offset += sum (&nCells[ncpu * (domain - 1) + rank], ncpu - rank) * MPI_FS;
// From the current domain (if rank != 0)
offset += sum (&nCells[ncpu * domain], rank) * MPI_FS;
}
// Open the file
ierror = MPI_File_open (MPI_COMM_WORLD, &filename[0],
MPI_MODE_CREATE | MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
if (ierror) {
abort ("Problems opening file", "MPIIO::writeCellFields");
}
// Set filetype
MPI_Datatype filetype;
// The number of points for the specified rank in this domain
int blocklength = nCells[ncpu * domain + rank];
// The total number of points in the domain
unsigned long int stride = nCellsT[domain];
// Number of blocks to write
int count = nCFields[domain];
ierror = MPI_Type_vector (count, blocklength, stride, MPI_FLOAT, &filetype);
if (ierror) {
abort ("Problems creating MPI vector", "MPIIO::writeCellFields");
}
ierror = MPI_Type_commit (&filetype);
if (ierror) {
abort ("Problems creating filetype", "MPIIO::writeCellFields");
}
// Set view
ierror = MPI_File_set_view (fh, offset, MPI_FLOAT, filetype, (char*) "native",
MPI_INFO_NULL);
if (ierror) {
abort ("Problems setting view", "MPIIO::writeCellFields");
}
// Since the array fields contain all fields, we can output them all at once
// Remember: datatype specifies the layout in memory, while filetype specifies
// the layout in the file. They are both of the MPI_Datatype kind.
// Set datatype such that the access in memory is correct. In this case the
// field values are in the right order already, so no need to make a datatype.
// Write to the file (one datatype is written)
ierror = MPI_File_write_all (fh, fields, count * blocklength, MPI_FLOAT,
MPI_STATUS_IGNORE);
if (ierror) {
abort ("Problems writing to file", "MPIIO::writeCellFields");
}
// Close the file
ierror = MPI_File_close (&fh);
if (ierror) {
abort ("Problems closing file", "MPIIO::writeCellFields");
}
// Free the memory used for filetype
ierror = MPI_Type_free (&filetype);
if (ierror) {
abort ("Problems freeing datatype", "MPIIO::writeCellFields");
}
// Finally, update the offset to the beginning of the last field we wrote
offset += stride * (count - 1) * MPI_FS;
}
// Method to do MPI errors
void MPIIO::abort (std::string errorMsg, std::string position)
// errorMsg = the error message the programmer has written
// position = the methode in which the error occured
{
std::cerr << errorMsg << " in " << position << std::endl;
// Stop the execution of the program
MPI_Barrier (MPI_COMM_WORLD);
std::cerr << "rank = " << rank << std::endl;
MPI_Abort (MPI_COMM_WORLD, -1);
exit (0);
}
unsigned long int MPIIO::sum (unsigned long int *startPos,
unsigned long int nel) {
unsigned long int total = 0; // The number of points
for (unsigned long int i = 0; i < nel; i++) {
total += startPos[i];
}
return total;
}
#if DIM == 2 // # new
PetscErrorCode MPIIO::DMDAGetElements_2D (DM dm, PetscInt *nel, PetscInt *nen,
const PetscInt *e[]) {
PetscErrorCode ierr;
DM_DA *da = (DM_DA*) dm->data;
PetscInt i, xs, xe, Xs, Xe;
PetscInt j, ys, ye, Ys, Ye;
PetscInt cnt = 0, cell[4], ns = 1, nn = 4;
PetscInt c;
if (!da->e) {
if (da->elementtype == DMDA_ELEMENT_Q1) {
ns = 1;
nn = 4;
}
ierr = DMDAGetCorners (dm, &xs, &ys, NULL, &xe, &ye, NULL);
CHKERRQ(ierr);
ierr = DMDAGetGhostCorners (dm, &Xs, &Ys, NULL, &Xe, &Ye, NULL);
CHKERRQ(ierr);
xe += xs;
Xe += Xs;
if (xs != Xs) xs -= 1;
ye += ys;
Ye += Ys;
if (ys != Ys) ys -= 1;
da->ne = ns * (xe - xs - 1) * (ye - ys - 1);
PetscMalloc((1 + nn * da->ne) * sizeof(PetscInt), &da->e);
for (j = ys; j < ye - 1; j++) {
for (i = xs; i < xe - 1; i++) {
cell[0] = (i - Xs) + (j - Ys) * (Xe - Xs);
cell[1] = (i - Xs + 1) + (j - Ys) * (Xe - Xs);
cell[2] = (i - Xs + 1) + (j - Ys + 1) * (Xe - Xs);
cell[3] = (i - Xs) + (j - Ys + 1) * (Xe - Xs);
if (da->elementtype == DMDA_ELEMENT_Q1) {
for (c = 0; c < ns * nn; c++)
da->e[cnt++] = cell[c];
}
}
}
}
*nel = da->ne;
*nen = nn;
*e = da->e;
return (0);
}
#elif DIM == 3
PetscErrorCode MPIIO::DMDAGetElements_3D (DM dm, PetscInt *nel, PetscInt *nen,
const PetscInt *e[]) {
PetscErrorCode ierr;
DM_DA *da = (DM_DA*) dm->data;
PetscInt i, xs, xe, Xs, Xe;
PetscInt j, ys, ye, Ys, Ye;
PetscInt k, zs, ze, Zs, Ze;
PetscInt cnt = 0, cell[8], ns = 1, nn = 8;
PetscInt c;
if (!da->e) {
if (da->elementtype == DMDA_ELEMENT_Q1) {
ns = 1;
nn = 8;
}
ierr = DMDAGetCorners (dm, &xs, &ys, &zs, &xe, &ye, &ze);
CHKERRQ(ierr);
ierr = DMDAGetGhostCorners (dm, &Xs, &Ys, &Zs, &Xe, &Ye, &Ze);
CHKERRQ(ierr);
xe += xs;
Xe += Xs;
if (xs != Xs) xs -= 1;
ye += ys;
Ye += Ys;
if (ys != Ys) ys -= 1;
ze += zs;
Ze += Zs;
if (zs != Zs) zs -= 1;
da->ne = ns * (xe - xs - 1) * (ye - ys - 1) * (ze - zs - 1);
PetscMalloc((1 + nn * da->ne) * sizeof(PetscInt), &da->e);
for (k = zs; k < ze - 1; k++) {
for (j = ys; j < ye - 1; j++) {
for (i = xs; i < xe - 1; i++) {
cell[0] = (i - Xs) + (j - Ys) * (Xe - Xs)
+ (k - Zs) * (Xe - Xs) * (Ye - Ys);
cell[1] = (i - Xs + 1) + (j - Ys) * (Xe - Xs)
+ (k - Zs) * (Xe - Xs) * (Ye - Ys);
cell[2] = (i - Xs + 1) + (j - Ys + 1) * (Xe - Xs)
+ (k - Zs) * (Xe - Xs) * (Ye - Ys);
cell[3] = (i - Xs) + (j - Ys + 1) * (Xe - Xs)
+ (k - Zs) * (Xe - Xs) * (Ye - Ys);
cell[4] = (i - Xs) + (j - Ys) * (Xe - Xs)
+ (k - Zs + 1) * (Xe - Xs) * (Ye - Ys);
cell[5] = (i - Xs + 1) + (j - Ys) * (Xe - Xs)
+ (k - Zs + 1) * (Xe - Xs) * (Ye - Ys);
cell[6] = (i - Xs + 1) + (j - Ys + 1) * (Xe - Xs)
+ (k - Zs + 1) * (Xe - Xs) * (Ye - Ys);
cell[7] = (i - Xs) + (j - Ys + 1) * (Xe - Xs)
+ (k - Zs + 1) * (Xe - Xs) * (Ye - Ys);
if (da->elementtype == DMDA_ELEMENT_Q1) {
for (c = 0; c < ns * nn; c++)
da->e[cnt++] = cell[c];
}
}
}
}
}
*nel = da->ne;
*nen = nn;
*e = da->e;
return (0);
}
#endif