-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathsolution.js
37 lines (31 loc) · 1.56 KB
/
solution.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
var minExtraChar = function (s, dictionary) {
// Create a set from the dictionary array for O(1) time complexity when checking if a word exists
let dict = new Set(dictionary);
// Get the length of the input string `s`
let n = s.length;
// Initialize a DP (Dynamic Programming) array of size `n + 1` (for zero-indexing),
// and fill it with the value `n` (maximum possible extra characters).
// `dp[i]` will store the minimum extra characters required for the substring `s[0:i]`
let dp = new Array(n + 1).fill(n);
// Base case: If the string is empty (s = ""), no extra characters are required
dp[0] = 0;
// Iterate through the string, considering substrings from the start to each position `i`
for (let i = 1; i <= n; i++) {
// Explore all substrings that end at position `i` by varying the start position `j`
for (let j = 0; j < i; j++) {
// Extract the substring `s[j:i]`
let sub = s.substring(j, i);
// Check if the current substring `sub` exists in the dictionary
if (dict.has(sub)) {
// If it does, update `dp[i]` to the minimum of its current value
// or the value at `dp[j]` (the number of extra characters for the substring `s[0:j]`)
dp[i] = Math.min(dp[i], dp[j]);
}
}
// After trying all substrings ending at `i`, consider the current character `s[i-1]`
// as an extra character, and update `dp[i]` accordingly.
dp[i] = Math.min(dp[i], dp[i - 1] + 1);
}
// The result is stored in `dp[n]`, which holds the minimum extra characters for the entire string `s`
return dp[n];
};