-
Notifications
You must be signed in to change notification settings - Fork 156
/
Copy pathmodel.py
249 lines (196 loc) · 12.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from __future__ import print_function
import os
import time
import random
from PIL import Image
import tensorflow as tf
import numpy as np
from utils import *
def concat(layers):
return tf.concat(layers, axis=3)
def DecomNet(input_im, layer_num, channel=64, kernel_size=3):
input_max = tf.reduce_max(input_im, axis=3, keepdims=True)
input_im = concat([input_max, input_im])
with tf.variable_scope('DecomNet', reuse=tf.AUTO_REUSE):
conv = tf.layers.conv2d(input_im, channel, kernel_size * 3, padding='same', activation=None, name="shallow_feature_extraction")
for idx in range(layer_num):
conv = tf.layers.conv2d(conv, channel, kernel_size, padding='same', activation=tf.nn.relu, name='activated_layer_%d' % idx)
conv = tf.layers.conv2d(conv, 4, kernel_size, padding='same', activation=None, name='recon_layer')
R = tf.sigmoid(conv[:,:,:,0:3])
L = tf.sigmoid(conv[:,:,:,3:4])
return R, L
def RelightNet(input_L, input_R, channel=64, kernel_size=3):
input_im = concat([input_R, input_L])
with tf.variable_scope('RelightNet'):
conv0 = tf.layers.conv2d(input_im, channel, kernel_size, padding='same', activation=None)
conv1 = tf.layers.conv2d(conv0, channel, kernel_size, strides=2, padding='same', activation=tf.nn.relu)
conv2 = tf.layers.conv2d(conv1, channel, kernel_size, strides=2, padding='same', activation=tf.nn.relu)
conv3 = tf.layers.conv2d(conv2, channel, kernel_size, strides=2, padding='same', activation=tf.nn.relu)
up1 = tf.image.resize_nearest_neighbor(conv3, (tf.shape(conv2)[1], tf.shape(conv2)[2]))
deconv1 = tf.layers.conv2d(up1, channel, kernel_size, padding='same', activation=tf.nn.relu) + conv2
up2 = tf.image.resize_nearest_neighbor(deconv1, (tf.shape(conv1)[1], tf.shape(conv1)[2]))
deconv2= tf.layers.conv2d(up2, channel, kernel_size, padding='same', activation=tf.nn.relu) + conv1
up3 = tf.image.resize_nearest_neighbor(deconv2, (tf.shape(conv0)[1], tf.shape(conv0)[2]))
deconv3 = tf.layers.conv2d(up3, channel, kernel_size, padding='same', activation=tf.nn.relu) + conv0
deconv1_resize = tf.image.resize_nearest_neighbor(deconv1, (tf.shape(deconv3)[1], tf.shape(deconv3)[2]))
deconv2_resize = tf.image.resize_nearest_neighbor(deconv2, (tf.shape(deconv3)[1], tf.shape(deconv3)[2]))
feature_gather = concat([deconv1_resize, deconv2_resize, deconv3])
feature_fusion = tf.layers.conv2d(feature_gather, channel, 1, padding='same', activation=None)
output = tf.layers.conv2d(feature_fusion, 1, 3, padding='same', activation=None)
return output
class lowlight_enhance(object):
def __init__(self, sess):
self.sess = sess
self.DecomNet_layer_num = 5
# build the model
self.input_low = tf.placeholder(tf.float32, [None, None, None, 3], name='input_low')
self.input_high = tf.placeholder(tf.float32, [None, None, None, 3], name='input_high')
[R_low, I_low] = DecomNet(self.input_low, layer_num=self.DecomNet_layer_num)
[R_high, I_high] = DecomNet(self.input_high, layer_num=self.DecomNet_layer_num)
I_delta = RelightNet(I_low, R_low)
I_low_3 = concat([I_low, I_low, I_low])
I_high_3 = concat([I_high, I_high, I_high])
I_delta_3 = concat([I_delta, I_delta, I_delta])
self.output_R_low = R_low
self.output_I_low = I_low_3
self.output_I_delta = I_delta_3
self.output_S = R_low * I_delta_3
# loss
self.recon_loss_low = tf.reduce_mean(tf.abs(R_low * I_low_3 - self.input_low))
self.recon_loss_high = tf.reduce_mean(tf.abs(R_high * I_high_3 - self.input_high))
self.recon_loss_mutal_low = tf.reduce_mean(tf.abs(R_high * I_low_3 - self.input_low))
self.recon_loss_mutal_high = tf.reduce_mean(tf.abs(R_low * I_high_3 - self.input_high))
self.equal_R_loss = tf.reduce_mean(tf.abs(R_low - R_high))
self.relight_loss = tf.reduce_mean(tf.abs(R_low * I_delta_3 - self.input_high))
self.Ismooth_loss_low = self.smooth(I_low, R_low)
self.Ismooth_loss_high = self.smooth(I_high, R_high)
self.Ismooth_loss_delta = self.smooth(I_delta, R_low)
self.loss_Decom = self.recon_loss_low + self.recon_loss_high + 0.001 * self.recon_loss_mutal_low + 0.001 * self.recon_loss_mutal_high + 0.1 * self.Ismooth_loss_low + 0.1 * self.Ismooth_loss_high + 0.01 * self.equal_R_loss
self.loss_Relight = self.relight_loss + 3 * self.Ismooth_loss_delta
self.lr = tf.placeholder(tf.float32, name='learning_rate')
optimizer = tf.train.AdamOptimizer(self.lr, name='AdamOptimizer')
self.var_Decom = [var for var in tf.trainable_variables() if 'DecomNet' in var.name]
self.var_Relight = [var for var in tf.trainable_variables() if 'RelightNet' in var.name]
self.train_op_Decom = optimizer.minimize(self.loss_Decom, var_list = self.var_Decom)
self.train_op_Relight = optimizer.minimize(self.loss_Relight, var_list = self.var_Relight)
self.sess.run(tf.global_variables_initializer())
self.saver_Decom = tf.train.Saver(var_list = self.var_Decom)
self.saver_Relight = tf.train.Saver(var_list = self.var_Relight)
print("[*] Initialize model successfully...")
def gradient(self, input_tensor, direction):
self.smooth_kernel_x = tf.reshape(tf.constant([[0, 0], [-1, 1]], tf.float32), [2, 2, 1, 1])
self.smooth_kernel_y = tf.transpose(self.smooth_kernel_x, [1, 0, 2, 3])
if direction == "x":
kernel = self.smooth_kernel_x
elif direction == "y":
kernel = self.smooth_kernel_y
return tf.abs(tf.nn.conv2d(input_tensor, kernel, strides=[1, 1, 1, 1], padding='SAME'))
def ave_gradient(self, input_tensor, direction):
return tf.layers.average_pooling2d(self.gradient(input_tensor, direction), pool_size=3, strides=1, padding='SAME')
def smooth(self, input_I, input_R):
input_R = tf.image.rgb_to_grayscale(input_R)
return tf.reduce_mean(self.gradient(input_I, "x") * tf.exp(-10 * self.ave_gradient(input_R, "x")) + self.gradient(input_I, "y") * tf.exp(-10 * self.ave_gradient(input_R, "y")))
def evaluate(self, epoch_num, eval_low_data, sample_dir, train_phase):
print("[*] Evaluating for phase %s / epoch %d..." % (train_phase, epoch_num))
for idx in range(len(eval_low_data)):
input_low_eval = np.expand_dims(eval_low_data[idx], axis=0)
if train_phase == "Decom":
result_1, result_2 = self.sess.run([self.output_R_low, self.output_I_low], feed_dict={self.input_low: input_low_eval})
if train_phase == "Relight":
result_1, result_2 = self.sess.run([self.output_S, self.output_I_delta], feed_dict={self.input_low: input_low_eval})
save_images(os.path.join(sample_dir, 'eval_%s_%d_%d.png' % (train_phase, idx + 1, epoch_num)), result_1, result_2)
def train(self, train_low_data, train_high_data, eval_low_data, batch_size, patch_size, epoch, lr, sample_dir, ckpt_dir, eval_every_epoch, train_phase):
assert len(train_low_data) == len(train_high_data)
numBatch = len(train_low_data) // int(batch_size)
# load pretrained model
if train_phase == "Decom":
train_op = self.train_op_Decom
train_loss = self.loss_Decom
saver = self.saver_Decom
elif train_phase == "Relight":
train_op = self.train_op_Relight
train_loss = self.loss_Relight
saver = self.saver_Relight
load_model_status, global_step = self.load(saver, ckpt_dir)
if load_model_status:
iter_num = global_step
start_epoch = global_step // numBatch
start_step = global_step % numBatch
print("[*] Model restore success!")
else:
iter_num = 0
start_epoch = 0
start_step = 0
print("[*] Not find pretrained model!")
print("[*] Start training for phase %s, with start epoch %d start iter %d : " % (train_phase, start_epoch, iter_num))
start_time = time.time()
image_id = 0
for epoch in range(start_epoch, epoch):
for batch_id in range(start_step, numBatch):
# generate data for a batch
batch_input_low = np.zeros((batch_size, patch_size, patch_size, 3), dtype="float32")
batch_input_high = np.zeros((batch_size, patch_size, patch_size, 3), dtype="float32")
for patch_id in range(batch_size):
h, w, _ = train_low_data[image_id].shape
x = random.randint(0, h - patch_size)
y = random.randint(0, w - patch_size)
rand_mode = random.randint(0, 7)
batch_input_low[patch_id, :, :, :] = data_augmentation(train_low_data[image_id][x : x+patch_size, y : y+patch_size, :], rand_mode)
batch_input_high[patch_id, :, :, :] = data_augmentation(train_high_data[image_id][x : x+patch_size, y : y+patch_size, :], rand_mode)
image_id = (image_id + 1) % len(train_low_data)
if image_id == 0:
tmp = list(zip(train_low_data, train_high_data))
random.shuffle(list(tmp))
train_low_data, train_high_data = zip(*tmp)
# train
_, loss = self.sess.run([train_op, train_loss], feed_dict={self.input_low: batch_input_low, \
self.input_high: batch_input_high, \
self.lr: lr[epoch]})
print("%s Epoch: [%2d] [%4d/%4d] time: %4.4f, loss: %.6f" \
% (train_phase, epoch + 1, batch_id + 1, numBatch, time.time() - start_time, loss))
iter_num += 1
# evalutate the model and save a checkpoint file for it
if (epoch + 1) % eval_every_epoch == 0:
self.evaluate(epoch + 1, eval_low_data, sample_dir=sample_dir, train_phase=train_phase)
self.save(saver, iter_num, ckpt_dir, "RetinexNet-%s" % train_phase)
print("[*] Finish training for phase %s." % train_phase)
def save(self, saver, iter_num, ckpt_dir, model_name):
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
print("[*] Saving model %s" % model_name)
saver.save(self.sess, \
os.path.join(ckpt_dir, model_name), \
global_step=iter_num)
def load(self, saver, ckpt_dir):
ckpt = tf.train.get_checkpoint_state(ckpt_dir)
if ckpt and ckpt.model_checkpoint_path:
full_path = tf.train.latest_checkpoint(ckpt_dir)
try:
global_step = int(full_path.split('/')[-1].split('-')[-1])
except ValueError:
global_step = None
saver.restore(self.sess, full_path)
return True, global_step
else:
print("[*] Failed to load model from %s" % ckpt_dir)
return False, 0
def test(self, test_low_data, test_high_data, test_low_data_names, save_dir, decom_flag):
tf.global_variables_initializer().run()
print("[*] Reading checkpoint...")
load_model_status_Decom, _ = self.load(self.saver_Decom, './model/Decom')
load_model_status_Relight, _ = self.load(self.saver_Relight, './model/Relight')
if load_model_status_Decom and load_model_status_Relight:
print("[*] Load weights successfully...")
print("[*] Testing...")
for idx in range(len(test_low_data)):
print(test_low_data_names[idx])
[_, name] = os.path.split(test_low_data_names[idx])
suffix = name[name.find('.') + 1:]
name = name[:name.find('.')]
input_low_test = np.expand_dims(test_low_data[idx], axis=0)
[R_low, I_low, I_delta, S] = self.sess.run([self.output_R_low, self.output_I_low, self.output_I_delta, self.output_S], feed_dict = {self.input_low: input_low_test})
if decom_flag == 1:
save_images(os.path.join(save_dir, name + "_R_low." + suffix), R_low)
save_images(os.path.join(save_dir, name + "_I_low." + suffix), I_low)
save_images(os.path.join(save_dir, name + "_I_delta." + suffix), I_delta)
save_images(os.path.join(save_dir, name + "_S." + suffix), S)