forked from albarji/neural-style-docker
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathentrypoint.py
110 lines (97 loc) · 4.25 KB
/
entrypoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Main entrypoint script to the neural-style app
import sys
import traceback
import logging
from neuralstyle.algorithms import styletransfer
from neuralstyle.utils import sublist
logging.basicConfig(level=logging.INFO)
LOGGER = logging.getLogger(__name__)
HELP = """
neural-style-docker: artistic style between images
--content CONTENT_IMAGES: file or files with the content images to use
--style STYLE_IMAGES: file or files with the styles to transfer
--output OUTPUT_FOLDER: name of the output folder in which to save results
--size SIZE: size of the output image. Default: content image size
--sw STYLE_WEIGHT (default 5): weight or list of weights of the style over the content, in range (0, inf)
--ss STYLE_SCALE (default 1.0): scaling or list of scaling factors for the style images
--alg ALGORITHM: style-transfer algorithm to use. Must be one of the following:
gatys Highly detailed transfer, slow processing times (default)
gatys-multiresolution Multipass version of Gatys method, provides even better quality
chen-schmidt Fast patch-based style transfer
chen-schmidt-inverse Even faster aproximation to chen-schmidt through the use of an inverse network
--tileoverlap TILE_OVERLAP: overlap of tiles in the style transfer, measured in pixels. If you experience
artifacts in the image you should try increasing this. Default: 100
Additionally provided parameters are carried on to the underlying algorithm.
"""
def main(argv=None):
if argv is None:
argv = sys.argv
try:
# Default parameters
contents = []
styles = []
savefolder = "/images"
size = None
alg = "gatys"
weights = None
stylescales = None
tileoverlap = None
otherparams = []
# Gather parameters
i = 1
while i < len(argv):
# References to inputs/outputs are re-referenced to the mounted /images directory
if argv[i] == "--content":
contents = ["/images/" + x for x in sublist(argv[i+1:], stopper="-")]
i += len(contents) + 1
elif argv[i] == "--style":
styles = ["/images/" + x for x in sublist(argv[i+1:], stopper="-")]
i += len(styles) + 1
# Other general parameters
elif argv[i] == "--output":
savefolder = "/images/" + argv[i+1]
i += 2
elif argv[i] == "--alg":
alg = argv[i+1]
i += 2
elif argv[i] == "--size":
size = int(argv[i+1])
i += 2
elif argv[i] == "--sw":
weights = [float(x) for x in sublist(argv[i+1:], stopper="-")]
i += len(weights) + 1
elif argv[i] == "--ss":
stylescales = [float(x) for x in sublist(argv[i+1:], stopper="-")]
i += len(stylescales) + 1
elif argv[i] == "--tileoverlap":
tileoverlap = int(argv[i+1])
i += 2
# Help
elif argv[i] == "--help":
print(HELP)
return 0
# Additional parameters will be passed on to the specific algorithms
else:
otherparams.append(argv[i])
i += 1
# Check parameters
if len(contents) == 0:
raise ValueError("At least one content image must be provided")
if len(styles) == 0:
raise ValueError("At least one style image must be provided")
LOGGER.info("Running neural style transfer with")
LOGGER.info("\tContents = %s" % str(contents))
LOGGER.info("\tStyle = %s" % str(styles))
LOGGER.info("\tAlgorithm = %s" % alg)
LOGGER.info("\tStyle weights = %s" % str(weights))
LOGGER.info("\tStyle scales = %s" % str(stylescales))
LOGGER.info("\tSize = %s" % str(size))
LOGGER.info("\tTile overlap = %s" % str(tileoverlap))
styletransfer(contents, styles, savefolder, size, alg, weights, stylescales, tileoverlap, algparams=otherparams)
return 1
except Exception:
print(HELP)
traceback.print_exc()
return 0
if __name__ == "__main__":
sys.exit(main())