-
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathmodel.py
238 lines (213 loc) · 10.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import tensorflow as tf
import seq2seq
import bleu
import reader
from os import path
import random
import numpy as np
class Model():
def __init__(self, train_input_file, train_target_file,
test_input_file, test_target_file, vocab_file,
num_units, layers, dropout,
batch_size, learning_rate, output_dir,
save_step = 100, eval_step = 1000,
param_histogram=False, restore_model=False,
init_train=True, init_infer=False):
self.num_units = num_units
self.layers = layers
self.dropout = dropout
self.batch_size = batch_size
self.learning_rate = learning_rate
self.save_step = save_step
self.eval_step = eval_step
self.param_histogram = param_histogram
self.restore_model = restore_model
self.init_train = init_train
self.init_infer = init_infer
if init_train:
self.train_reader = reader.SeqReader(train_input_file,
train_target_file, vocab_file, batch_size)
self.train_reader.start()
self.train_data = self.train_reader.read()
self.eval_reader = reader.SeqReader(test_input_file, test_target_file,
vocab_file, batch_size)
self.eval_reader.start()
self.eval_data = self.eval_reader.read()
self.model_file = path.join(output_dir, 'model.ckpl')
self.log_writter = tf.summary.FileWriter(output_dir)
if init_train:
self._init_train()
self._init_eval()
if init_infer:
self.infer_vocabs = reader.read_vocab(vocab_file)
self.infer_vocab_indices = dict((c, i) for i, c in
enumerate(self.infer_vocabs))
self._init_infer()
self.reload_infer_model()
def gpu_session_config(self):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
return config
def _init_train(self):
self.train_graph = tf.Graph()
with self.train_graph.as_default():
self.train_in_seq = tf.placeholder(tf.int32, shape=[self.batch_size, None])
self.train_in_seq_len = tf.placeholder(tf.int32, shape=[self.batch_size])
self.train_target_seq = tf.placeholder(tf.int32, shape=[self.batch_size, None])
self.train_target_seq_len = tf.placeholder(tf.int32, shape=[self.batch_size])
output = seq2seq.seq2seq(self.train_in_seq, self.train_in_seq_len,
self.train_target_seq, self.train_target_seq_len,
len(self.train_reader.vocabs),
self.num_units, self.layers, self.dropout)
self.train_output = tf.argmax(tf.nn.softmax(output), 2)
self.loss = seq2seq.seq_loss(output, self.train_target_seq,
self.train_target_seq_len)
params = tf.trainable_variables()
gradients = tf.gradients(self.loss, params)
clipped_gradients, _ = tf.clip_by_global_norm(
gradients, 0.5)
self.train_op = tf.train.AdamOptimizer(
learning_rate=self.learning_rate
).apply_gradients(zip(clipped_gradients,params))
if self.param_histogram:
for v in tf.trainable_variables():
tf.summary.histogram('train_' + v.name, v)
tf.summary.scalar('loss', self.loss)
self.train_summary = tf.summary.merge_all()
self.train_init = tf.global_variables_initializer()
self.train_saver = tf.train.Saver()
self.train_session = tf.Session(graph=self.train_graph,
config=self.gpu_session_config())
def _init_eval(self):
self.eval_graph = tf.Graph()
with self.eval_graph.as_default():
self.eval_in_seq = tf.placeholder(tf.int32, shape=[self.batch_size, None])
self.eval_in_seq_len = tf.placeholder(tf.int32, shape=[self.batch_size])
self.eval_output = seq2seq.seq2seq(self.eval_in_seq,
self.eval_in_seq_len, None, None,
len(self.eval_reader.vocabs),
self.num_units, self.layers, self.dropout)
if self.param_histogram:
for v in tf.trainable_variables():
tf.summary.histogram('eval_' + v.name, v)
self.eval_summary = tf.summary.merge_all()
self.eval_saver = tf.train.Saver()
self.eval_session = tf.Session(graph=self.eval_graph,
config=self.gpu_session_config())
def _init_infer(self):
self.infer_graph = tf.Graph()
with self.infer_graph.as_default():
self.infer_in_seq = tf.placeholder(tf.int32, shape=[1, None])
self.infer_in_seq_len = tf.placeholder(tf.int32, shape=[1])
self.infer_output = seq2seq.seq2seq(self.infer_in_seq,
self.infer_in_seq_len, None, None,
len(self.infer_vocabs),
self.num_units, self.layers, self.dropout)
self.infer_saver = tf.train.Saver()
self.infer_session = tf.Session(graph=self.infer_graph,
config=self.gpu_session_config())
def train(self, epochs, start=0):
if not self.init_train:
raise Exception('Train graph is not inited!')
with self.train_graph.as_default():
if path.isfile(self.model_file + '.meta') and self.restore_model:
print("Reloading model file before training.")
self.train_saver.restore(self.train_session, self.model_file)
else:
self.train_session.run(self.train_init)
total_loss = 0
for step in range(start, epochs):
data = next(self.train_data)
in_seq = data['in_seq']
in_seq_len = data['in_seq_len']
target_seq = data['target_seq']
target_seq_len = data['target_seq_len']
output, loss, train, summary = self.train_session.run(
[self.train_output, self.loss, self.train_op, self.train_summary],
feed_dict={
self.train_in_seq: in_seq,
self.train_in_seq_len: in_seq_len,
self.train_target_seq: target_seq,
self.train_target_seq_len: target_seq_len})
total_loss += loss
self.log_writter.add_summary(summary, step)
if step % self.save_step == 0:
self.train_saver.save(self.train_session, self.model_file)
print("Saving model. Step: %d, loss: %f" % (step,
total_loss / self.save_step))
# print sample output
sid = random.randint(0, self.batch_size-1)
input_text = reader.decode_text(in_seq[sid],
self.eval_reader.vocabs)
output_text = reader.decode_text(output[sid],
self.train_reader.vocabs)
target_text = reader.decode_text(target_seq[sid],
self.train_reader.vocabs).split(' ')[1:]
target_text = ' '.join(target_text)
print('******************************')
print('src: ' + input_text)
print('output: ' + output_text)
print('target: ' + target_text)
if step % self.eval_step == 0:
bleu_score = self.eval(step)
print("Evaluate model. Step: %d, score: %f, loss: %f" % (
step, bleu_score, total_loss / self.save_step))
eval_summary = tf.Summary(value=[tf.Summary.Value(
tag='bleu', simple_value=bleu_score)])
self.log_writter.add_summary(eval_summary, step)
if step % self.save_step == 0:
total_loss = 0
def eval(self, train_step):
with self.eval_graph.as_default():
self.eval_saver.restore(self.eval_session, self.model_file)
bleu_score = 0
target_results = []
output_results = []
for step in range(0, self.eval_reader.data_size):
data = next(self.eval_data)
in_seq = data['in_seq']
in_seq_len = data['in_seq_len']
target_seq = data['target_seq']
target_seq_len = data['target_seq_len']
outputs = self.eval_session.run(
self.eval_output,
feed_dict={
self.eval_in_seq: in_seq,
self.eval_in_seq_len: in_seq_len})
for i in range(len(outputs)):
output = outputs[i]
target = target_seq[i]
output_text = reader.decode_text(output,
self.eval_reader.vocabs).split(' ')
target_text = reader.decode_text(target[1:],
self.eval_reader.vocabs).split(' ')
prob = int(self.eval_reader.data_size * self.batch_size / 10)
target_results.append([target_text])
output_results.append(output_text)
if random.randint(1, prob) == 1:
print('====================')
input_text = reader.decode_text(in_seq[i],
self.eval_reader.vocabs)
print('src:' + input_text)
print('output: ' + ' '.join(output_text))
print('target: ' + ' '.join(target_text))
return bleu.compute_bleu(target_results, output_results)[0] * 100
def reload_infer_model(self):
with self.infer_graph.as_default():
self.infer_saver.restore(self.infer_session, self.model_file)
def infer(self, text):
if not self.init_infer:
raise Exception('Infer graph is not inited!')
with self.infer_graph.as_default():
in_seq = reader.encode_text(text.split(' ') + ['</s>',],
self.infer_vocab_indices)
in_seq_len = len(in_seq)
(outputs, scores) = self.infer_session.run(self.infer_output,
feed_dict={
self.infer_in_seq: [in_seq],
self.infer_in_seq_len: [in_seq_len]})
output = outputs[0]
score = np.average(scores[0].T, axis=1)
output_text = reader.decode_multi_text(output, self.infer_vocabs)
output_without_space = [''.join(s.split(' ')) for s in output_text]
return (output_without_space, score)