-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscha_basic.01.R
312 lines (213 loc) · 7.03 KB
/
scha_basic.01.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
library(dlm)
build_dlm_scha <- function(order_trend,order_cycle,freq_names,rho) {
hours_per_cycle <- c(
4*2.*12.420612,
23.93447213,
12.4206012,
25.81933871,
12.,
26.868350, #O1
12.65834751,
12.19162085, #0.0820235525 S2
6.210300601,
8.177140247,
4.140200401,
4.930880215,
12.4206012*2,
12.4206012*2/3.,
12.4206012*2/5.) #0.2028035475
names(hours_per_cycle) <- c("LOW","K1","M2","O1","S2","Q1","N2","L2","M4","MK3","M6","MK5","M1","M3","M5")
radians_per_hour <- 2.*pi/hours_per_cycle
freq_used <- 0.25*radians_per_hour[freq_names]
nfreq <- length(freq_used)
print("nfreq")
print(nfreq)
print("order_trend")
print(order_trend)
print("order_cycle")
print(order_cycle)
nstate <- order_trend + 2*order_cycle*nfreq
# Construct observation matrix
obs_trend <- c(1,rep(0,order_trend-1))
obs_per_freq <- c(1,0,rep(0,2*(order_cycle-1)))
FF <- t(as.matrix(c(obs_trend, rep(obs_per_freq,nfreq))))
# Construct state transition matrix
state_trend <- diag(order_trend)
if (order_trend>1) {
for (itrend in 1:(order_trend-1)){state_trend[itrend,itrend+1] = 1}
}
# cycles
rhovec = rep(rho,nfreq)
print("FF")
print(freq_used)
print(rho)
#cycles_matrices <- matrix(c(cos(x),sin(x),-sin(x),cos(x)),2)
#print(cycles_matrices)
single_freq <- function(f,rho){
#cycle_identity <- rep(c(rep(1,(order_cycle-1)*2),0,0),nfreq)[1:(2*order_cycle*nfreq-2)]
#cycle_lag_part <-lapply(1:4,function(x) diag(min(1,x%%order_cycle),2))
cycle_trig_part <- rep(list(rho*matrix(c(cos(f),-sin(f),sin(f),cos(f)),2)),order_cycle)
single <-bdiag(cycle_trig_part)
for(i in 1:(2*(order_cycle-1))){
single[i,i+2] = 1
}
single
}
#blah <-lapply(freq_used,function(x) bdiag(rep(list(matrix(c(cos(x),sin(x),-sin(x),cos(x)),2)),order_cycle)))
cycle_matrices <-mapply(single_freq,freq_used,rhovec,SIMPLIFY=FALSE)
#cycle_identity <- rep(c(rep(1,(order_cycle-1)*2),0,0),nfreq)[1:(2*order_cycle*nfreq-2)]
state_cycle <- bdiag(cycle_matrices)
print("state_cycle dimensions")
print(dim(state_cycle))
# combine trend and cycle components
GG <- bdiag(state_trend,state_cycle)
list(FF=FF,GG=GG)
}
##########################
fname <- "F:/projects/stochastic_cycle/freeport_stage.csv"
y <- read.csv(fname, header = FALSE,stringsAsFactors=FALSE)
y <- as.matrix(y)
y <- y - mean(y)
ysave <- y
#remove <- 1850:2000
#select <- 1200:3500
remove <- 1650:1720
select <- 1200:3500
remove <- 2050:1920
select <- 1200:3500
#remove <- 2250:2320
#select <- 1200:3500
#remove <- 1650:1720
#select <- 1200:3500
remove <- 2450:2520
select <- 1200:3500
remove <- 2650:2725
select <- 1200:3500
y[remove] <- NA
hours_per_cycle <- c(
4*2.*12.420612,
23.93447213,
12.4206012,
25.81933871,
12.,
26.868350, #O1
12.65834751,
12.19162085, #0.0820235525 S2
6.210300601,
8.177140247,
4.140200401,
4.930880215,
12.4206012*2,
12.4206012*2/3.,
12.4206012*2/5.) #0.2028035475
freq_names <- c("LOW","K1","M2","O1","S2","Q1","N2","L2","M4","MK3","M6","MK5","M1","M3","M5")
names(hours_per_cycle) <- freq_names
radians_per_hour <- 2.*pi/hours_per_cycle
freq_used <- 0.25*radians_per_hour[freq_names]
regress_names <- c("K1","M2","O1","S2","Q1","N2","L2","M4","MK3","M6","MK5")
regress_freq = freq_used[regress_names]
regress = TRUE
if (regress){
t <- 1:length(y)
X <- lapply(regress_freq, function(x) cbind(cos(x*t),sin((x*t))))
X <- as.data.frame(X)
lm1 <- lm(y~ K1.1+K1.2+M2.1+M2.2+O1.1+O1.2+S2.1+S2.2+Q1.1+Q1.2+N2.1+N2.2+L2.1+L2.2+M4.1+M4.2+MK3.1+MK3.2,na.action=na.exclude,data=X)
yres <- residuals(lm1)
y[t,] <- yres
ylm <- predict(lm1,as.data.frame(X))
}
# 0.99, trend = 2 cycle = 2 works
# 0.97, trend = 3 cycle = 3 works
rho <- 0.999
ordertrend = 2
ordercycle = 2
freqs <- c("K1","M2","MK3","M4","MK5","M6")
freqs <- c("LOW","M1","M2","M3","M4","M5","M6")
freqs <- c("M1","M2","M3","M4","M5")
numfreq <- length(freqs)
determ <- build_dlm_scha( ordertrend, ordercycle, freqs, rho=rho)
V <- diag(c(1))/100.
Wtrend <- c(rep(0.,ordertrend-1),1.)
Wcycle <- rep( c(rep(0,2*(ordercycle-1)),1,1),numfreq)
W <- diag(c(Wtrend,Wcycle))/200.
#W[ordertrend+ordercycle*2-1,ordertrend+ordercycle*2-1] <-0.001 # 0.005 worked well
#W[ordertrend+8,ordertrend+8] <- 0.001
m0 <- rep(0., dim(W)[1])
C0 <- diag(10,dim(W)[1])
model = dlm(FF=determ$FF,V=V,GG=determ$GG,W=W,m0=m0,C0=C0)
modFilt <- dlmFilter(y[,1],model)
modSmooth <- dlmSmooth(modFilt)
#select <- 19000:24000
#select <- 16000:24000
plot.ts(ysave[select]*1,ylim=c(-4,4.),col="black")
lines(ylm,col="purple")
ycompare <- ysave
ycompare[ y == NA ] <- NA
lines(y[select],col="red")
abline(h=0)
D0 = 1
D1 = 1+ordertrend
D2 = 1+ordertrend+ordercycle*2
D3 = 1+ordertrend+ordercycle*4
D4 = 1+ordertrend+ordercycle*6
D5 = 1+ordertrend+ordercycle*8
sumf <- modSmooth$s[select,D0] + modSmooth$s[select,D1] + modSmooth$s[select,D2] + modSmooth$s[select,D3] +modSmooth$s[select,D4] +modSmooth$s[select,D5]
yreconstruct <- sumf + ylm
lines(yreconstruct,col="green")
lines(modSmooth$s[select,1])
lines(modSmooth$s[select,1+ordertrend],col="dark green")
lines(modSmooth$s[select,1+ordertrend+ordercycle*2],col="blue")
lines(modSmooth$s[select,1+ordertrend+ordercycle*4],col="purple")
lines(modSmooth$s[select,1+ordertrend+ordercycle*6],col="purple")
lines(modSmooth$s[select,27],col="cyan")
lines(modSmooth$s[select,35],col="brown")
lines(modSmooth$s[select,43],col="orange")
lines(modSmooth$s[select,51],col="darkslategray")
lines(modSmooth$s[select,1]+modSmooth$s[select,3],col="dark green")
plot.ts(fitted(lm1))
lines(sumf)
plot.ts(modFilt$f[select,3])
fname <- paste0(sta,'_',type,'_fit_data',case,'.csv')
write.csv(dropFirst(modSmooth$s),file=fname)
write_fit_data <- function(type,sta,case='',V,fname='') {
if (fname == '') {
fname <- paste0('D:/control_volume2/flow_data/kalman_filter_input/',sta,'_',type,'.dat')}
y <- read.csv(fname, header = FALSE)
y <- as.matrix(y)
fname <- paste0(sta,'fit_',type,case,'.dat')
fit <- dget(fname)
V <- V
model <- buildFunM2O1K1S2Q1N2L2M4MK3M6MK5_v1(V,fit$par)
modFilt <- dlmFilter(y[,2],model)
modSmooth <- dlmSmooth(modFilt)
fname <- paste0(sta,'_',type,'_fit_data',case,'.csv')
write.csv(dropFirst(modSmooth$s),file=fname)
}
fitData <- function(infile,outfile,parm) {
y <- read.csv(infile, header = FALSE)
y = as.matrix(y)
print(Sys.time())
flush.console()
fit <- dlmMLE(y[,2], control=list(maxit = 30000), parm = parm,
build = buildFunM2O1K1S2Q1N2L2M4MK3M6MK5)
print(warnings())
flush.console()
print(Sys.time())
flush.console()
dput(fit,file=outfile)
return(fit)
}
write_fit_data <- function(type,sta,case='',V,fname='') {
if (fname == '') {
fname <- paste0('D:/control_volume2/flow_data/kalman_filter_input/',sta,'_',type,'.dat')}
y <- read.csv(fname, header = FALSE)
y <- as.matrix(y)
fname <- paste0(sta,'fit_',type,case,'.dat')
fit <- dget(fname)
V <- V
model <- buildFunM2O1K1S2Q1N2L2M4MK3M6MK5_v1(V,fit$par)
modFilt <- dlmFilter(y[,2],model)
modSmooth <- dlmSmooth(modFilt)
fname <- paste0(sta,'_',type,'_fit_data',case,'.csv')
write.csv(dropFirst(modSmooth$s),file=fname)
}