This code demonstrates a usage of cuSOLVER syevd function for using syevd to compute the spectrum of a dense symmetric system by
Ax = λx
where A is a 3x3 dense symmetric matrix
A = | 3.5 | 0.5 | 0.0 |
| 0.5 | 3.5 | 0.0 |
| 0.0 | 0.0 | 2.0 |
The following code uses syevd to compute eigenvalues and eigenvectors, then compare to exact eigenvalues {2,3,4}.
All GPUs supported by CUDA Toolkit (https://developer.nvidia.com/cuda-gpus)
Linux
Windows
x86_64
ppc64le
arm64-sbsa
- A Linux/Windows system with recent NVIDIA drivers.
- CMake version 3.18 minimum
$ mkdir build
$ cd build
$ cmake ..
$ make
Make sure that CMake finds expected CUDA Toolkit. If that is not the case you can add argument -DCMAKE_CUDA_COMPILER=/path/to/cuda/bin/nvcc
to cmake command.
$ mkdir build
$ cd build
$ cmake -DCMAKE_GENERATOR_PLATFORM=x64 ..
$ Open cusolver_examples.sln project in Visual Studio and build
$ ./cusolver_syevd_example
Sample example output:
A = (matlab base-1)
3.50 0.50 0.00
0.50 3.50 0.00
0.00 0.00 2.00
=====
after syevd: info = 0
eigenvalue = (matlab base-1), ascending order
W[1] = 2.000000E+00
W[2] = 3.000000E+00
W[3] = 4.000000E+00
V = (matlab base-1)
0.00 -0.71 0.71
0.00 0.71 0.71
1.00 0.00 0.00
=====
|lambda - W| = 0.000000E+00