forked from wanglimin/TDD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTemporalCNNFeature.m
53 lines (43 loc) · 1.83 KB
/
TemporalCNNFeature.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
function [FCNNFeature_c4, FCNNFeature_c3] = TemporalCNNFeature(vid_name, net, NUM_HEIGHT, NUM_WIDTH)
L = 10;
% Input video
filelist =dir([vid_name,'*x*.jpg']);
video = zeros(NUM_HEIGHT,NUM_WIDTH,L*2,length(filelist));
for i = 1: length(filelist)
flow_x = imread(sprintf('%s_%05d.jpg',[vid_name,'x'],i));
flow_y = imread(sprintf('%s_%05d.jpg',[vid_name,'y'],i));
video(:,:,1,i) = imresize(flow_x,[NUM_HEIGHT,NUM_WIDTH],'bilinear');
video(:,:,2,i) = imresize(flow_y,[NUM_HEIGHT,NUM_WIDTH],'bilinear');
end
for i = 1:L-1
tmp = cat(4, video(:,:,(i-1)*2+1:i*2,2:end),video(:,:,(i-1)*2+1:i*2,end:end));
video(:,:,i*2+1:i*2+2,:) = tmp;
end
d = load('flow_mean');
FLOW_MEAN = d.image_mean;
FLOW_MEAN = imresize(FLOW_MEAN,[NUM_HEIGHT,NUM_WIDTH]);
batch_size = 40;
num_images = size(video,4);
num_batches = ceil(num_images/batch_size);
FCNNFeature_c4 = [];
FCNNFeature_c3 = [];
for bb = 1 : num_batches
range = 1 + batch_size*(bb-1): min(num_images,batch_size*bb);
images = zeros(NUM_WIDTH, NUM_HEIGHT, L*2, batch_size, 'single');
tmp = video(:,:,:,range);
for ii = 1 : size(tmp,4)
img = single(tmp(:,:,:,ii));
images(:,:,:,ii) = permute(img -FLOW_MEAN,[2,1,3]);
end
net.blobs('data').set_data(images);
net.forward_prefilled();
feature_c4 = permute(net.blobs('conv4').get_data(),[2,1,3,4]);
feature_c3 = permute(net.blobs('conv3').get_data(),[2,1,3,4]);
if isempty(FCNNFeature_c4)
FCNNFeature_c4 = zeros(size(feature_c4,1), size(feature_c4,2), size(feature_c4,3), num_images, 'single');
FCNNFeature_c3 = zeros(size(feature_c3,1), size(feature_c3,2), size(feature_c3,3), num_images, 'single');
end
FCNNFeature_c4(:,:,:,range) = feature_c4(:,:,:,mod(range-1,batch_size)+1);
FCNNFeature_c3(:,:,:,range) = feature_c3(:,:,:,mod(range-1,batch_size)+1);
end
end