-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathday_04b.cpp
241 lines (226 loc) · 7.22 KB
/
day_04b.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <fstream>
#include <iostream>
#include <ranges>
#include <sstream>
#include <string>
#include <vector>
#include <iomanip>
// MD5 algorithm implemented with priority given to ease of understanding as opposed to optimization; hence it might take some time for the code to run
// Bytes of the message need to be ordered in lowest to highest significance hence the swapping of orders. Note that this does not apply to the length added to the end of the message
// Also note that this assumes that the object to be hashed is made of complete bytes which is true given that a string is a collection of chars which are each one byte.
// Assumes that the size of the input will fit in std::size_t
constexpr std::array<uint32_t, 64> createTableOfConstants() {
std::array<uint32_t, 64> table {};
float multiplication_factor = std::pow(2, 32);
for (std::size_t i = 0; i < table.size(); i++) {
table[i] = uint32_t(std::fabs(std::sin(i + 1)) * multiplication_factor);
}
return table;
};
std::vector<bool> convert_str_to_bits(const std::string& s) {
std::vector<bool> s_bits;
s_bits.reserve(s.size() * 8);
for (const auto& c : s) {
std::vector<bool> temp;
auto i = uint8_t(c);
while(i > 0) {
temp.push_back((i % 2 == 0 ? false : true));
i /= 2;
}
while (temp.size() < 8) temp.push_back(false);
std::reverse(temp.begin(), temp.end());
for (const auto& ele :temp) {
s_bits.push_back(ele);
}
}
return s_bits;
}
std::vector<bool> convertDecimalToBinary(uint32_t n) {
std::vector<bool> binary;
while(n > 0) {
binary.push_back(n%2);
n/=2;
}
while(binary.size() < 32) {
binary.push_back(false);
}
std::reverse(binary.begin(), binary.end());
return binary;
}
void padding(std::vector<bool>& s) {
const auto original_length = s.size();
s.push_back(true);
const std::size_t size = s.size() % 512;
const auto rem = 512 - size;
std::size_t padding = rem;
if (rem < 64) {
padding += 512;
}
padding -= 64;
for (std::size_t idx = 0; idx < padding; idx++) {
s.push_back(false);
}
for (int i = 0; i < 64; i++) {
s.push_back(false);
}
// Given that max<size_t> is 2^64 - 1 on 64 bit systems this,
// it can be assumed that original_length < 2 ^ 64,
// else the algorithm will need some modification
// to use unsigned 128 bit integers (or greater) for size instead of size_t
// and then the line below can be modified to use
// const auto binary = convertDecimalToBinary(original_length % std::pow(2, 64))
const auto binary = convertDecimalToBinary(original_length);
for(std::size_t i = 0; i < binary.size(); i++) {
s[s.size() + i - binary.size()] = binary[i];
}
}
uint32_t convertBinaryToDecimal(const std::vector<bool>& binary) {
assert(binary.size() == 32);
if (binary.empty()) return 0;
uint32_t decimal = 0;
uint32_t base = 1;
for (auto i = binary.size()-1; i > 0; i--) {
decimal += binary[i] * base;
base *= 2;
}
decimal += binary[0] * base;
return decimal;
}
std::vector<std::vector<uint32_t>> convert_to_blocks(std::vector<bool>& s_bits) {
std::vector<std::vector<uint32_t>> blocks;
for (std::size_t i = 0; i < s_bits.size()/512; i++) {
std::vector<uint32_t> block;
for (int j = 0; j < 16; j++) {
std::vector<bool> word;
for (int k = 0; k < 32; k++) {
word.push_back(s_bits[i * 512 + j * 32 + k]);
}
// Convert to little endian
std::vector<bool> word_swapped(32, false);
for (int k = 0; k < 32; k++) {
word_swapped[(3 - (k / 8)) * 8 + (k % 8)] = word[k];
}
if (!(i == (s_bits.size()/512 - 1) && (j == 15 || j == 14))) word = word_swapped;
block.push_back(convertBinaryToDecimal(word));
}
if(i == (s_bits.size()/512 - 1)) std::swap(block[block.size()-1], block[block.size()-2]);
blocks.push_back(block);
}
return blocks;
}
uint32_t leftrotate(const uint32_t& a, const uint32_t& b) {
return (a << b)|(a >> (32 - b));
}
std::array<uint32_t, 4> md5(const std::string& s_str) {
constexpr uint32_t A_prime = 0x67452301;
constexpr uint32_t B_prime = 0xefcdab89;
constexpr uint32_t C_prime = 0x98badcfe;
constexpr uint32_t D_prime = 0x10325476;
uint32_t A = 0;
uint32_t B = 0;
uint32_t C = 0;
uint32_t D = 0;
auto F = [&B, &C, &D](){ return ((B & C) | (~B & D)); };
auto G = [&B, &C, &D](){ return ((B & D) | (C & ~D)); };
auto H = [&B, &C, &D]() { return (B ^ C ^ D); };
auto I = [&B, &C, &D]() { return (C ^ (B | ~D)); };
constexpr std::array<uint32_t, 64> K = createTableOfConstants();
constexpr std::array<uint32_t, 64> s = {{7,12,17,22,7,12,17,22,7,12,17,22,7,12,17,22,5,9,14,20,5,9,14,20,5,9,14,20,5,9,14,20,4,11,16,23,4,11,16,23,4,11,16,23,4,11,16,23 ,6,10,15,21,6,10,15,21,6,10,15,21,6,10,15,21 }};
auto s_bits = convert_str_to_bits(s_str);
padding(s_bits);
assert(s_bits.size() == 512);
auto blocks = convert_to_blocks(s_bits);
uint32_t AA = A_prime;
uint32_t BB = B_prime;
uint32_t CC = C_prime;
uint32_t DD = D_prime;
for (auto& block : blocks) {
A = AA;
B = BB;
C = CC;
D = DD;
for (uint32_t i = 0; i < 64; i++) {
uint32_t g = 0;
uint32_t ans = 0;
if (i < 16) {
ans = F();
g = i;
} else if (i >= 16 && i < 32) {
ans = G();
g = (5 * i + 1) % 16;
} else if (i >= 32 && i < 48) {
ans = H();
g = (3 * i + 5) % 16;
} else if (i >= 48 && i < 64) {
ans = I();
g = (7 * i) % 16;
}
const auto temp = D;
D = C;
C = B;
B = B + leftrotate(A+ans+K[i]+block[g], s[i]);
A = temp;
}
AA = uint32_t(AA) + uint32_t(A);
BB = uint32_t(BB) + uint32_t(B);
CC = uint32_t(CC) + uint32_t(C);
DD = uint32_t(DD) + uint32_t(D);
}
const auto t = [](uint32_t n) {
const std::vector<bool> temp = convertDecimalToBinary(n);
assert(temp.size() == 32);
auto temp2 = temp;
for (int k = 0; k < 32; k++) {
temp2[(3 - (k / 8)) * 8 + (k % 8)] = temp[k];
}
assert(temp2.size() == 32);
return convertBinaryToDecimal(temp2);
};
AA = t(AA);
BB = t(BB);
CC = t(CC);
DD = t(DD);
return std::array<uint32_t, 4>{{AA,BB, CC, DD}};
}
std::string convertHashToString (const std::array<uint32_t, 4>& hash_parts){
std::stringstream stream_main;
for (const auto& hash_part : hash_parts) {
std::stringstream stream;
stream << std::hex << hash_part;
for(int i = 0;i < 8 - stream.str().size(); i++) {
stream_main << '0';
}
stream_main << std::hex << hash_part;
}
return stream_main.str();
}
int main(int argc, char* argv[]) {
std::string input = "../input/day_04_input";
if (argc > 1) {
input = argv[1];
}
std::ifstream file(input);
std::string secret_key;
while(std::getline(file, secret_key)) {
std::size_t i = 0;
while(true) {
const auto to_hash = secret_key + std::to_string(i);
const auto hash_value = convertHashToString(md5(to_hash));
int count = 0;
for (const auto ele : hash_value) {
if (ele == '0') count++;
else break;
}
if (count >= 6) {
std::cout << hash_value << '\n';
break;
}
i++;
}
}
return 0;
}