-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathtop_vectors.py
42 lines (30 loc) · 1.29 KB
/
top_vectors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy
import scipy.signal
from generate import *
def generate():
# Generate random source vectors
src1 = random_complex64(512)
src2 = random_complex64(512)
# Multiply Conjugate
out = src1 * numpy.conj(src2)
# Low pass filter 16 taps, 100e3 cutoff at 1e6 sample rate
b = scipy.signal.firwin(16, 100e3, nyq=1e6 / 2)
out = scipy.signal.lfilter(b, 1, out).astype(type(out[0]))
# Frequency discriminator with modulation index of 5
out_shifted = numpy.insert(out, 0, numpy.complex64())[:len(out)]
tmp = out * numpy.conj(out_shifted)
out = (numpy.arctan2(numpy.imag(tmp), numpy.real(tmp)) / (2*numpy.pi*5.0)).astype(numpy.float32)
# Decimate by 25
out = scipy.signal.decimate(out, 25, n=16 - 1, ftype='fir', zero_phase=False).astype(numpy.float32)
lines = []
# Header
lines.append("local M = {}")
# Source vectors
lines.append("M.SRC1_TEST_VECTOR = \"%s\"" % ''.join(["\\x%02x" % b for b in src1.tobytes()]))
lines.append("M.SRC2_TEST_VECTOR = \"%s\"" % ''.join(["\\x%02x" % b for b in src2.tobytes()]))
lines.append("")
# Output vector
lines.append("M.SNK_TEST_VECTOR = \"%s\"" % ''.join(["\\x%02x" % b for b in out.tobytes()]))
lines.append("")
lines.append("return M")
return RawSpec("\n".join(lines))