From 82bfc38d079b1ef5f4b88ac7094a00029d2e99af Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Wed, 6 Nov 2024 12:05:05 +0800 Subject: [PATCH] [Misc] Sort the list of embedding models (#10037) Signed-off-by: DarkLight1337 --- vllm/model_executor/models/registry.py | 26 ++++++++------------------ 1 file changed, 8 insertions(+), 18 deletions(-) diff --git a/vllm/model_executor/models/registry.py b/vllm/model_executor/models/registry.py index af52fbffba19e..792c6cec34ae0 100644 --- a/vllm/model_executor/models/registry.py +++ b/vllm/model_executor/models/registry.py @@ -94,33 +94,23 @@ _EMBEDDING_MODELS = { # [Text-only] "BertModel": ("bert", "BertEmbeddingModel"), + "DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"), "Gemma2Model": ("gemma2", "Gemma2EmbeddingModel"), "LlamaModel": ("llama", "LlamaEmbeddingModel"), + **{ + # Multiple models share the same architecture, so we include them all + k: (mod, arch) for k, (mod, arch) in _TEXT_GENERATION_MODELS.items() + if arch == "LlamaForCausalLM" + }, "MistralModel": ("llama", "LlamaEmbeddingModel"), - "Qwen2ForRewardModel": ("qwen2_rm", "Qwen2ForRewardModel"), - "Qwen2ForSequenceClassification": ( - "qwen2_cls", "Qwen2ForSequenceClassification"), - "LlamaForCausalLM": ("llama", "LlamaForCausalLM"), "Phi3ForCausalLM": ("phi3", "Phi3ForCausalLM"), - "DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"), + "Qwen2ForRewardModel": ("qwen2_rm", "Qwen2ForRewardModel"), + "Qwen2ForSequenceClassification": ("qwen2_cls", "Qwen2ForSequenceClassification"), # noqa: E501 # [Multimodal] "LlavaNextForConditionalGeneration": ("llava_next", "LlavaNextForConditionalGeneration"), # noqa: E501 "Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"), } -def add_embedding_models(base_models, embedding_models): - with_pooler_method_models = {} - embedding_models_name = embedding_models.keys() - for name, (path, arch) in base_models.items(): - if arch in embedding_models_name: - with_pooler_method_models[name] = (path, arch) - return with_pooler_method_models - -_EMBEDDING_MODELS = { - **add_embedding_models(_TEXT_GENERATION_MODELS, _EMBEDDING_MODELS), - **_EMBEDDING_MODELS, -} - _MULTIMODAL_MODELS = { # [Decoder-only] "Blip2ForConditionalGeneration": ("blip2", "Blip2ForConditionalGeneration"),